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INTRODUCTION

The routines that run the arm model are all based 
on integer arithmetic, for speed.  In some routines, 
protection against dividing a very large number by a 
very small number was omitted for the same reason.  
As a result, the model will occasionally halt on a “di-
vision by zero” error.  This occurs mostly when the 
fi ngertip is very close to the eyes and a rapid lateral 
or vertical movement of the target occurs, with rather 
loose settings of the second-level integration factors.  
Just restart the program.  This model is not as skillful 
as a real human being!

Those who are used to models in which output is 
calculated may be taken aback by the casual treatment 
of sensitive calculations such as time-integrations, 
and by other approximations that frequently occur.  
In any output computation involving time integra-
tions, the normal approach would require elaborate 
methods for achieving accurate integrations and 
setting initial conditions, for the smallest errors will 
accumulate over time.  If, as in this model, there are 
thousands of calculations per second, and they are 
done with an accuracy of at best 0.1 per cent, and 
the model is allowed to run for many thousands of 
iterations, the normal expectation would be that the 
model’s behavior would rapidly drift off in meaning-
less directions.  In this control-system model where 
all calculations involve closed causal loops, no such 
effects occur.  The model will run indefi nitely without 
any cumulative errors.

The calculations to follow are given in the pro-
gramming language Pascal (Borland International’s 
Turbo Pascal 5.0).  It is assumed that the reader 
understands the notation of this language, can infer 
its meaning, or will refer to a book on this language 
for enlightenment.  One hint: the term “div” indi-
cates integer division.  The meaning of the program 
segments is described in English.  It is also assumed 
that the reader either has some basic acquaintance 
with control theory or is willing to skip sections that 
are unfamiliar.  See Some basic concepts of Perceptual 
Control Theory on page 9.

In all control-system calculations, the error signal 
may be used in the positive or the negative sense; this 
is determined by details of the calculations in the ex-
ternal feedback loop.  Adjusting the overall loop gain 
to be negative was easiest to accomplish in this way.

I: THE KINESTHETIC 
CONTROL SYSTEMS

There are three kinesthetic control systems, which 
are assumed to sense and control joint angles.  The 
lower-order systems which make the muscles produce 
the requested joint angle are assumed to be optimally 
damped, and are not modeled.  A summary of variable 
defi nitions is shown on page 8.

Calculations

This program simulates a human arm reaching out to touch a target the user can move in three dimen-
sions.  The arm has three degrees of freedom (two at the shoulder and one at the elbow).  The position 
of the “fi ngertip” is ray-traced to form two retinal images in which both the target and fi ngertip posi-
tions appear.  These images are used to derive x, y, and distance signals, which are controlled by a visual 
system that varies the reference signals entering the three kinesthetic higher-order control systems.
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Each of these systems senses its appropriate joint 
angle, compares the sensor signal with the reference 
signal given from higher-order systems, and produces 
an output change in joint angle that is driven by a 
“slowed proportional” output signal.  The slowed-
proportional signal is computed by multiplying the 
error signal by a gain factor, then letting the actual 
output signal change a specifi ed fraction of the way 
from its previous value toward the new value.  The 
outputs of all three systems are linked to the arm by 
the procedure Link1to0, below.

In trigonometric calculations, there are 4096 angle 
units per circle.  All trigonometric functions are taken 
from precomputed tables of integer values, scaled to 
a maximum value of 4096.

Kinesthetic Azimuth control 
(horizontal angle)

This procedure calculates the output signal of the 
kinesthetic azimuth control system, which swings 
the arm horizontally about a vertical axis passing 
through the right shoulder.  The reference signal, 
r1b, is a global variable and is set by a higher-order 
system.  The perceived input azimuth “az” is set by 
the procedure that links the fi rst-order output signals 
to the environment, discussed below.  The variable 
i1b is a long integer (32-bit) temporary variable; the 
error signal is multiplied by 100 and by the gain 
(g1b), so that the computed next value of output is 
100 times its actual size.  This permits dividing by 
slowing factors (s1b) of up to 100 without losing 
precision.  The result is divided by 100 to become 
the real output signal (o1b).
procedure azimuth1;
begin
 p1b := az;
  {kinesthetic perception of lateral shoulder-

finger line’s angle}
 e1b := r1b – p1b;
  {e = error. r1b comes from a higher level}
 i1b := i1b + (longint(100)*g1b*e1b – i1b) div 

s1b;
 if i1b > lim1b then i1b := lim1b;
  {set signal limits}
 if i1b < –lim1b then i1b := –lim1b;
 o1b := i1b div 100;
end;

Kinesthetic Elevation control

This procedure calculates the output of the system 
that controls the angular elevation of the fi ngertip 
above/below horizontal.  T1 is the sensed and actual 
angle of the upper arm relative to horizontal.  T2 is 
the angle between an extension of the upper arm and 
the lower arm.  Because the two parts of the arm are 
assumed equal in length, the angle at the shoulder 
from the upper-arm axis to the shoulder-fi nger line is 
just half the external angle at the elbow, or T2/2.  Thus 
the sensed elevation perception, p1a, is perceptually 
computed from the sensed joint angles T1 and T2: T1 
+ T2/2.  The remainder of the procedure is identical 
in form to the azimuth control system; its reference 
signal r1a comes from a higher-order system.
procedure vertical1;
begin
 p1a := t1 + (t2 div 2);
  {kinesthetic perception of vertical shoulder-

finger angle}
 e1a := r1a – p1a;
  {error = reference – perception}
 i1a := i1a + (longint(100) * g1a * e1a – i1a) 

div s1a;
 if i1a > lim1a then i1a := lim1a;
 if i1a < –(lim1a + lim1a) then i1a := –(lim1a 

+ lim1a);
 o1a := i1a div 100;
  {output signal}
end;

Kinesthetic Distance control

“Kinesthetic distance” is actually the elbow angle T2 
(subtracted from 180 degrees); the actual distance 
from shoulder to fi ngertip is given by 2*Ra*cos(T2/2), 
where Ra is the radius of the upper arm (equal to 
the lower arm).  In Pascal, multiplication is always 
indicated by an asterisk (*).  When the elbow angle 
changes, the elevation control system is disturbed, but 
it alters the upper-arm angle (T1) to compensate for 
the disturbance due to the change in T2.  Thus when 
the distance control system changes the elbow angle, 
the fi ngertip moves straight out from the shoulder, the 
elevation angle of the fi ngertip remaining constant.  
This is accomplished without any explicit coordina-
tion between elevation and distance control and is a 
natural consequence of feedback control.
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The relevant information is the deviation of the target, 
in angle, from the line of sight, in the x (horizontal) 
and y (vertical) directions.

The target position is set independently by the 
user of this program, from the keyboard in ARMKEY.
EXE or from a joystick in ARM.EXE.

Vertical visual (head) tracking

The variable TRy is the angular Target deviation in 
the y direction from the line of sight of the Right eye.  
The output function is a pure time-integrator: the 
output signal accumulates according to the size and 
direction of the error signal.  The reference signal is 
set to zero, meaning that this system attempts to bring 
the y target position to the line of sight (by moving 
the head and thus the line of sight).  If the reference 
signal were nonzero, the head would move to keep the 
target above or below the line of sight by the specifi ed 
amount.  The output signal becomes the head verti-
cal angle, “gazey,” in the Link1to0 procedure above.  
Gazey is the angle that is used (after adjustment for 
running off the ends of the trigonometric tables) in 
the Environment Calculations section to compute 
the vertical angle between the line of sight and the 
direction to the target, TRy.  The lower-order muscle 
systems that make physical head angle follow the 
output signal are assumed.
procedure gaze1y;
begin
 r1e := 0;
 p1e := TRy;
  {perceived y target deviation from gaze angle}
 e1e := r1e – p1e;
 i1e := i1e – e1e;
  {time-integration (with negative sign)}
 if i1e > lim1e then i1e := lim1e;
 if i1e < –lim1e then i1e := –lim1e;
 o1e := i1e div g1e;
end;

Horizontal visual (head) tracking

The variable TRx is the angular Target deviation in 
the x direction from the line of sight of the Right eye.  
The horizontal tracking system works exactly as the 
vertical system does.  Its output signal, o1d, becomes 
the head horizontal angle through specifying “gazex” 
in the Link1to0 procedure above.  Gazex becomes the 
angle used in the Environment Calculations section 
to compute the horizontal angle between the line of 
sight and the direction to the target, TRx.

procedure distance1;
begin
 p1c := 2048 – t2;
  {kinesthetic perception of shoulder-finger dis-

tance: inner angle at elbow. 2048 is equivalent 
to 180 degrees.}

 e1c := r1c – p1c;
 i1c := i1c – (longint(100)*g1c*e1c – i1c) div 

s1c;
 if i1c > lim1c then i1c := lim1c;
 if i1c < 0 then i1c := 0;
 o1c := i1c div 100;
end;

Linking fi rst-order systems 
to the physical arm.

Here the loops are closed for each of the kinesthetic 
control systems.  The output of the elevation (verti-
cal angle) system, for example, becomes T1, the 
angle at the upper arm.  If we were modeling the 
still-lower-order systems, this is where the outputs 
of the kinesthetic joint-angle control systems would 
become reference signals for lower-order force-control 
systems, and where the physical dynamics of the arm 
would be introduced.

This linking procedure also links the “gaze” con-
trol systems to their environmental effect: gazex is 
the azimuth (horizontal) head angle, and gazey is the 
elevation (vertical) head angle.
procedure link1to0;
begin
 t1 := o1a; {vertical}
 az := o1b; {azimuth}
 t2 := o1c; {distance}
 gazex := o1d; {gaze x}
 gazey := o1e; {gaze y}
end;

II: THE HEAD ANGLE (VISUAL 
TRACKING)  CONTROL SYSTEMS

These two systems use visual information about the 
x and y positions of the target relative to the line of 
sight from the right eye only.  It would be just as 
easy to compute this information as the average as 
seen by both eyes, which would permit tracking to 
continue with one eye closed.  These systems keep 
the right eye looking directly at the target, by turning 
and tilting the head.

The visual information is derived in a way de-
scribed below under “Environment calculations.”  
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procedure gaze1x;
begin
 r1d := 0;
 p1d := TRx;
  {perceived x target deviation from gaze angle}
 e1d := r1d – p1d;
 i1d := i1d – e1d;
  {time-integration}
 if i1d > lim1d then i1d := lim1d;
 if i1d < –lim1d then i1d := –lim1d;
 o1d := i1d div g1d;
end;

III: LATERAL AND VERTICAL 
VISUAL ARM CONTROL

The higher-level systems that move the fi nger side-
ways and vertically on the basis of visual information 
sense the deviation of the fi nger from the target as 
seen by the right eye.  The average deviation seen by 
both eyes could also be used, but by using the right 
eye we imitate the effect of “dominance” (and speed 
the calculations).

These two systems are conceptually of a higher 
order than the visual head control systems.  The visual 
head control systems use only information about the 
target angular position relative to the center of vision 
of the right eye; this is an “absolute” position in the 
eye’s framework, and depends on the direction of gaze.  
The systems we now consider sense an invariant in 
the eye’s framework, namely, the difference in position 
between two objects in the same fi eld of vision, the 
fi nger and the target.  This angular relative distance 
is invariant (to a fi rst approximation) with respect to 
the absolute position of the images on the retina, and 
hence is unaffected (nearly) by the head’s movements.  
The lateral visual control system is organized to bring 
the horizontal component of fi nger-target angular 
separation to zero by moving the arm in azimuth 
(swinging it horizontally); the vertical visual control 
system is organized to bring the vertical component 
of fi nger-target angular separation to zero by mov-
ing the elevation angle of the line extending from 
shoulder to fi ngertip.

Neither of the two physical arm movements is 
exactly in the direction needed to correct either visual 
error; as a result, correcting one visual error disturbs 
the other visual control system.  Nevertheless, the two 
systems maintain their own perceptual variables in the 
reference state, zero.  There are no output computa-
tions that compensate for the “wrong” directions of 
movement; this is accomplished entirely by visual 
feedback effects.

If non-zero reference signals (r2a and r2b) were 
used, the fi nger would track the target, but at a fi xed 
distance vertically and horizontally from it.

Horizontal visual target-fi nger control

This system perceives the difference in target and 
fi nger angles in the x direction.  It integrates the error 
signal computed relative to a reference signal of zero.  
The output signal that results, o2b, becomes the refer-
ence signal for the kinesthetic azimuth control system; 
the link occurs in the procedure Link2to1, below.

The perceptual signal is adjusted for “size constan-
cy”.  If the Finger Left-Right angle difference FLRd 
is greater than 10 angle units (it is, over the normal 
range of distances), the Target signal is computed as 
the produce of the Target x displacement in the Right 
eye, TRx, multiplied by a constant and divided by 
the angle difference FLRd.  That is nearly the same 
as multiplying the angular deviation by the perceived 
target distance.  The perceived Finger displacement 
in x seen by the Right eye, FRx, is also multiplied by 
the distance in this way.  The perceptual signal p2b is 
the difference between these two quantities.

The function “dmd” is a “double-multiply-divide” 
assembly-language macro that multiplies the fi rst 
two arguments to give a 32-bit intermediate result, 
which is then divided by the third argument to give an 
integer (16-bit) result.  This preserves accuracy when 
multiplying an integer by a ratio of integers.
procedure azimuth2;
begin
 r2b := 0;
 if FLRd > 10 then
 p2b := dmd(TRx,90,TLRD) – dmd(FRx,90,FLRd);
 {perceived finger –target azimuth x constant x 

distance}
 e2b := r2b – p2b;
 if e2b > errlim then e2b := errlim
 else if e2b < –errlim then e2b := –errlim;
 i2b := i2b – e2b;
 if i2b > lim2b then i2b := lim2b;
 if i2b < –lim2b then i2b := –lim2b;
 o2b := i2b div g2b;
end;

Vertical visual target-fi nger control

This system works exactly as above, but perceives 
the vertical angular separation between fi nger and 
target.  Its output, o2a, becomes the reference signal 
for the kinesthetic vertical position control system.  
The function “dmd” is explained above.
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procedure vertical2;
begin
 r2a := 0;
  {reference target-finger vertical angle}
 if FLRd > 10 then
 p2a := dmd(TRy,90,TLRd) – dmd(FRy,90,FLRd);
 {perceived target-finger vertical angle x con-

stant x distance}
 e2a :=  r2a – p2a;
 if e2a > errlim then e2a := errlim
 else if e2a < –errlim then e2a := –errlim;
 i2a := i2a – e2a;
 if i2a > (lim2a + lim2a) then i2a := lim2a + 

lim2a;
 if i2a < –lim2a then i2a := –lim2a;
 o2a := i2a div g2a;
end;

IV: VISUAL DISTANCE CONTROL

The fi nal control system uses relative target-fi nger 
angular separations from both eyes, information that 
is invariant with respect to location of the images on 
the retina, to a fi rst approximation.

The visual distance control system uses the visual 
parallax from binocular viewing of both Finger and 
Target.  Only information about deviations in the x 
(horizontal) direction is used.  Visual distance is the 
reciprocal of the angular difference between left-eye 
and right-eye images of the same object.  For the 
fi nger, the angles relative to the direction of gaze 
are FLx and FRx, and for the target, TLx and TRx.  
The information obtained from each eye contains 
the angle between fi nger and target: TLx – FLx, or 
TRx – FRx.  As mentioned, only the latter is used 
for lateral visual control of the fi nger relative to the 
target.  If each relative angle is represented by a signal, 
then subtracting the left-eye signal from the right-eye 
signal is equivalent to computing (TRx – FRx) – (TLx 
– FLx), which by simple transposition is (TRx – TLx) 
– (FRx – FLx).  Thus we get the difference between 
parallaxes of the fi nger and target, without requiring 
that the eye be looking directly at either object.  This 
difference in parallaxes corresponds to the relative 
distance in depth between fi nger and target (in a 
nonlinear way).  When this difference is zero, the 
fi nger is at the same distance as the target.

Depth information can be obtained without visual 
tracking by the head, if the objects are somewhere 
in the visual fi eld.  Visual tracking has the effect of 
keeping the baseline between the eyes nearly perpen-
dicular to the line of sight to the target, which changes 
the “horopter” of classical visual research (surface of 
equal apparent distances) almost to a sphere.  Visual 
tracking was ignored in the classical analysis.  With 
visual head tracking, distance control works better 
over a wider lateral range of angles because the effec-
tive baseline does not change (except during transient 
errors).

To simplify computations, the difference in target 
angle is computed outside this procedure from the 
basic angle information about target and fi nger as seen 
by each eye.  The method of subtracting the target-
to-fi nger angle in one eye from the target-to-fi nger 
angle in the other eye would be exactly equivalent.  
In this procedure, TLRd is the Target Left-Right 
deviation in angle, and FLRd is the same deviation 
for the fi nger.

The quantity REx – LEx is the baseline distance 
between the eyes.

FLRd is defi ned as FLx – FRx, and TLRd as TLx 
– FLx.  Distance is obtained by multiplying the eye 
separation, (REx – LEx) by a constant and dividing 
the product by FLRd or TLRd.

As mentioned above, the function “dmd” is a 
“double-multiply-divide” assembly-language macro 
that multiplies the fi rst two arguments to give a 32-bit 
intermediate result, which is then divided by the third 
argument to give an integer (16-bit) result.

Note that the perceptual signal p2c is the differ-
ence between perceived target distance and perceived 
fi nger distance.  It is therefore a perception of relation-
ship.  This control system also works properly if we 
defi ne the perceptual signal as p2c := TLRD – FLRd 
(i.e., the reciprocal of distance).  The sense of the error 
signal has to be reversed.  This redefi nes the variable as 
a “closeness” variable—the larger either angle-differ-
ence is, the closer the object is.  With this defi nition, 
the loop gain rises rapidly as the fi nger approaches the 
eyes, so performance is less uniform over the whole 
range of distances.  But the nonlinearity has no other 
effect: when the perception is zero (matching the zero 
reference signal), the fi nger is at the same perceived 
distance as the target in either case.
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procedure distance2;
var u,v: integer;
begin
 r2c := 0;
 u := dmd(REx – LEx,1024,FLRd);
  {finger distance}
 v := dmd(REx – LEx,1024,TLRd);
  {target distance}
 p2c := (v-u);
  {relative distance}
 e2c := r2c – p2c;
 if e2c > errlim then e2c := errlim
 else if e2c < –errlim then e2c := –errlim;
 i2c := i2c – e2c;
  {compute total integral first}
 if i2c > lim2c then i2c := lim2c;
 if i2c < 1 then i2c := 1;
 o2c := i2c div g2c;
  {reduce by integration factor}
end;

Linking to Level 1.

The output signals of the higher-order control sys-
tems become the reference signals for the kinesthetic 
control systems in the following procedure, which 
closes all the remaining loops except for the envi-
ronmental part:
procedure link2to1;
begin
 r1a := o2a;    {vertical angle}
 r1b := o2b;    {azimuth}
 r1c := o2c;    {distance}
end;

VI: ENVIRONMENTAL CALCULATIONS

By far the most complex computations in this model 
concern the physical properties of the body and its 
environment.

When the fi gure is viewed from its right side, the 
body is placed 200 units to the left of the origin and 
the positive z coordinate extends to the right.  The 
positive y coordinate extends upward, and the positive 
x coordinate extends toward the viewer.

Before the “Environment” procedure is entered, 
the gaze angles that have been computed as output 
signals from the two head-angle control systems are 
used to rotate the head and eyes in space, fi rst about 
the x axis and then about the y axis.  Using the other 
sequence of rotations would tilt the head sideways.  
The result is a new set of eye positions, used below, 
and a stored polygon of x-y coordinates for drawing 
the head and eyes.  The Left Eye x-coordinate after 
rotation is symbolized LExr, and so on.

Computing fi ngertip position

The kinesthetic control systems make perceived 
joint angles match their given reference signals, but 
know nothing of where that places the elbow or the 
fi ngertip.  From the given angles and the radius of 
the upper and lower arm (identical), we must fi rst 
calculate where the fi ngertip will be in space.  The 
origin of this space is a point 200 units distant (in 
the “z” coordinate) from the place where the neck of 
the fi gure meets the body (coordinates 0,0,–200, in 
x,y, and z).  The shoulder around which the upper 
arm swivels is located at x = 80, y = 0, and z = –200.  
Note that these calculations are purely physical and 
are independent of the behavior-model.

In the following, SH is shoulder position and FI is 
fi nger position.  Expressions like sine[x] and cosine[x] 
do not refer to the built-in trigonometric functions of 
Pascal (note spelling and use of brackets rather than 
parentheses), but to precomputed tables; “x” would 
be an index into the table, where index values can 
run from –2048 (–180 degrees) to 2047 (+179.91 
degrees).  Readers converting to the “C” language 
will have to compensate for these negative indices, 
which “C” cannot use.

“Scale” is a constant equal to 4096, and represents 
the one-way peak value of sines or cosines in the 
stored tables.
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procedure environment;
begin

 t3 := t1 + t2 div 2; {angle, horiz to shoulder-
finger line}

{Find x,y,z coordinates of fingertip}

 rf :=  dmd(ra + ra,cosine[t2 div 2],scale);
  {radius, shoulder-finger}

 FIy := SHy + dmd(rf,sine[t3],scale);
  {y coordinate of finger}
 temp := dmd(rf,cosine[t3],scale);
 FIx := SHx + dmd(temp,sine[az],scale);
  {x coordinate of finger}
 FIz := SHz + dmd(temp,cosine[az],scale);
  {z coordinate of finger}
 if FIz < LEz + 25 then FIz := LEz + 25;
  {keep finger in bounds}
if FIz < REz + 25 then FIz := REz + 25;

{Find x,y,z coordinates of elbow}

 ELy := SHy + dmd(ra,sine[t1],scale);
 temp := dmd(ra,cosine[t1],scale);
 ELx := SHx + dmd(temp,sine[az],scale);
 ELz := SHz + dmd(temp,cosine[az],scale);

  {Fill in 3-dimensional polygon for arm 
points}

 arm3[1].x3d := SHx; arm3[1].y3d := SHy; arm3[1].
z3d := SHz;

 arm3[2].x3d := ELx; arm3[2].y3d := ELy; arm3[2].
z3d := ELz;

 arm3[3].x3d := FIx; arm3[3].y3d := FIy; arm3[3].
z3d := FIz;

The fi nal steps above fi ll in an array containing a series 
of x,y,z coordinates: the shoulder, the elbow, and the 
arm positions.  This is later rotated according to the 
viewing angle, then projected into two-dimensional 
x-y coordinates for display.

The environment procedure then continues:

Calculating target, fi nger angles 
relative to gaze

The fi rst step is to compute x,y,x coordinates of the 
target and fi nger position relative to each eye.  TXL, 
for example, means Target X coordinate relative to 
Left eye.

A notation like LExr means Left Eye, x coordinate, 
rotated, calculated as explained above before entering 
this procedure.

{Calculate temporary variables for computing eye 
angles}

 TXL := TAx – LExr; TXR := TAx – RExr;
 TYL := TAy – LEyr; TYR := TAy – REyr;
 TZL := TAz – LEzr; TZR := TAz – REzr;

 FXL := FIx – LExr; FXR := FIx – RExr;
 FYL := FIy – LEyr; FYR := FIy – REyr;
 FZL := FIz – LEzr; FZR := FIz – REzr;

In the following, the procedure “rotateimage” is en-
tered with the x,y,z coordinates of an object, target 
or fi nger as seen by one eye, and the angles of rota-
tion theta2 and phi2, which are simply copies of the 
two gaze angles, gazex and gazey (compensated for 
overrunning the limits of the sine and cosine tables).  
The fi rst two arguments are passed “by reference” 
and indicate the returned values.  These values are the 
angles in x and y of the object relative to the direction 
of gaze.  The angles thus represent the displacement 
of the objects from the center of the fi eld of view for 
each eye.  This routine makes use of the rotated posi-
tions of the eyes, which are global variables.

The fi nal two statements compute the parallax 
angles of fi nger and target from the angle variables 
just calculated.
  {Find angles, finger and target, right eye}

 rotateimage(TRx,TRy,TXR,TYR,TZR,theta2,phi2);
 rotateimage(FRx,FRy,FXR,FYR,FZR,theta2,phi2);

 {Find angles, finger and target, left eye}

 rotateimage(TLx,TLy,TXL,TYL,TZL,theta2,phi2);
 rotateimage(FLx,FLy,FXL,FYL,FZL,theta2,phi2);

 {Find depth angles, eyes to target and finger, 
radians}

 FLRd := FRx – FLx;
 TLRd := TRx – TLx;

 end;   {of environment procedure}
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VII: COMMENTS ON THE MODEL

The discussions above have reviewed the main 
calculations for each of the eight control systems, 
and for the environmental part of the control loops.  
The Registered User version of this demonstration 
contains all the source code (Borland International’s 
Turbo Pascal 5.0) including the special Units used.  
Most of this code is occupied with doing the rota-
tions, calculating positions for plotting, initializing, 
and allowing for editing of parameters.

The plots that are displayed on the screen show 
the horizontal angle, vertical angle, and distance-dif-
ferential between the fi nger and the target, as seen by 
the modeled person.

It would be possible to assign two separate con-
trol systems to each eye, while retaining control of 
the head as a whole.  The eyes could then converge 
on the target (or the fi nger), and track the target in-
dependently of the head.  This would lead to some 
interesting studies of the effect of relative loop gains in 
the head and eye control systems.  The extra plotting 
required, as well as the extra rotation and control-
system calculations, however, would slow the display.  
In later versions of this program, eye convergence 
will be introduced—although to preserve speed, 
much of the program might have to be converted to 
assembler language, or to a somewhat faster language 
such as “C”.

A further refi nement of the model will involve 
introducing the lower-order control systems that con-
vert joint-angle position error signals into commands 
to force-control systems.  These systems will need the 
physical properties of the arm to be calculated—mass 
and moments of inertia.  This will undoubtedly slow 
the display considerably, but will be worth doing just 
to see what problems arise.  This would increase the 
number of levels in the model to about fi ve, and with 
eye-convergence included, the number of control 
systems to about 15.

VARIABLE DEFINITIONS
 halfside,   {half of one side of box}
 FIx,   {x position of finger}
 FIy,   {y position of finger}
 FIz,   {z position of finger}
 TAx,   {x position of target}
 TAy,   {y position of target}
 TAz,   {z position of target}
 REx,   {right eye x coordinate}
 REy,   {right eye y coordinate}
 REz,   {right eye z coordinate}
 LEx,   {left eye x coordinate}
 LEy,   {left eye y coordinate}
 LEz,   {left eye z coordinate}
 RExr,  {right eye rotated x coordinate}
 REyr,  {right eye rotated y coordinate}
 REzr,  {right eye rotated z coordinate}
 LExr,  {left eye rotated x coordinate}
 LEyr,  {left eye rotated y coordinate}
 LEzr,  {left eye rotated z coordinate}
 ELx,   {x coordinate of elbow}
 ELy,   {y coordinate of elbow}
 ELz,   {z coordinate of elbow}
 SHx,   {x coordinate of shoulder}
 SHy,   {y coordinate of shoulder}
 SHz,   {z coordinate of shoulder}
 ra,    {length of upper and lower arms}
 t1,    {angle from nadir to upper arm}
 t2,    {angle, projection of upper arm to lower arm}
 t3,    {angle from shoulder to finger}
 az,    {azimuth angle of arm}
 TLRd,  {depth angle to target}
 FLRd,  {depth angle to finger}
 TRx,   {azimuth angle, right eye to target}
 TLx,   {azimuth angle, left  eye to target}
 FRx,   {azimuth angle, right eye to finger}
 FLx,   {azimuth angle, left  eye to finger}
 TRy,   {vertical angle, right eye to target}
 TLy,   {vertical angle, left  eye to target}
 FRy,   {vertical angle, right eye to finger}
 FLy,   {vertical angle, left  eye to finger}
 TXL,TYL,TZL,FXL,FYL,FZL,
  {positions relative to eyes}
 TXR,TYR,TZR,FXR,FYR,FZR: integer;
 p1a,p1b,p1c,p1d,p1e,e1a,e1b, e1c,e1d,e1e,o1a,o1b

,o1c,o1d, o1e,r1a,r1b,r1c,r1d,r1e: integer;
  {lower order control}
 p2a,p2b,p2c,e2a,e2b,e2c, o2a,o2b,o2c,r2a,r2b,r2c: 

integer;
  {higher order control}
 g1a,g1b,g1c,g1d,g1e,s1a,s1b,s1c,s1d,s1e,
  {gain constants}
 g2a,g2b,g2c: integer;
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SOME BASIC CONCEPTS OF 
PERCEPTUAL CONTROL THEORY

A control system is an organization that

1 Senses some external variable through an Input 
Function that represents one environmental at-
tribute as a variable perceptual signal;

2 Compares the perceptual signal against a given 
reference signal to generate an error signal; 
and

3 Operates on the error signal with an Output 
Function to generate an output signal.

The output signal may serve as the reference signal 
for lower-order control systems (in a hierarchy of 
control), or at the lowest level of control may actuate 
muscles that move the limbs or apply forces to the 
environment.

The effects of the output signal coming from a 
control system alter the world outside it.  Those ef-
fects, in turn, alter the variable that is being sensed, 
thus altering the perceptual signal.  If the control 
system is properly organized, its output effects will 
always tend to bring the perceptual signal closer in 
value to the reference signal, reducing the error signal 
that is driving the action.  Disturbances that affect the 
input to the control system cause error signal changes 
that make the action of the system strongly oppose 
the effects of the disturbance.  Thus control systems 
control their own inputs relative to an intended state 
set by the reference signal.

The “loop gain” of a control system determines 
how energetically it will oppose disturbances and 
how accurately it will maintain its perceptual signal 
in a match with its reference signal.  The main deter-
minant of loop gain is the sensitivity of the Output 
Function to error signals.  The more output that a 
given error signal can produce through the Output 
Function, the smaller the fi nal error signal will be.

The main thesis of perceptual control theory is 
that organisms are control systems at every level of 
organization.  All behavior is employed to control the 
perceptions that behavior affects.  There is no such 
thing as “responding to a stimulus.”  Stimuli are actu-
ally disturbances of controlled perceptions.


