
© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

INTRODUCTION

The routines that run the arm model are all based
on integer arithmetic, for speed. In some routines,
protection against dividing a very large number by a
very small number was omitted for the same reason.
As a result, the model will occasionally halt on a “di-
vision by zero” error. This occurs mostly when the
fi ngertip is very close to the eyes and a rapid lateral
or vertical movement of the target occurs, with rather
loose settings of the second-level integration factors.
Just restart the program. This model is not as skillful
as a real human being!

Those who are used to models in which output is
calculated may be taken aback by the casual treatment
of sensitive calculations such as time-integrations,
and by other approximations that frequently occur.
In any output computation involving time integra-
tions, the normal approach would require elaborate
methods for achieving accurate integrations and
setting initial conditions, for the smallest errors will
accumulate over time. If, as in this model, there are
thousands of calculations per second, and they are
done with an accuracy of at best 0.1 per cent, and
the model is allowed to run for many thousands of
iterations, the normal expectation would be that the
model’s behavior would rapidly drift off in meaning-
less directions. In this control-system model where
all calculations involve closed causal loops, no such
effects occur. The model will run indefi nitely without
any cumulative errors.

The calculations to follow are given in the pro-
gramming language Pascal (Borland International’s
Turbo Pascal 5.0). It is assumed that the reader
understands the notation of this language, can infer
its meaning, or will refer to a book on this language
for enlightenment. One hint: the term “div” indi-
cates integer division. The meaning of the program
segments is described in English. It is also assumed
that the reader either has some basic acquaintance
with control theory or is willing to skip sections that
are unfamiliar. See Some basic concepts of Perceptual
Control Theory on page 9.

In all control-system calculations, the error signal
may be used in the positive or the negative sense; this
is determined by details of the calculations in the ex-
ternal feedback loop. Adjusting the overall loop gain
to be negative was easiest to accomplish in this way.

I: THE KINESTHETIC
CONTROL SYSTEMS

There are three kinesthetic control systems, which
are assumed to sense and control joint angles. The
lower-order systems which make the muscles produce
the requested joint angle are assumed to be optimally
damped, and are not modeled. A summary of variable
defi nitions is shown on page 8.

Calculations

This program simulates a human arm reaching out to touch a target the user can move in three dimen-
sions. The arm has three degrees of freedom (two at the shoulder and one at the elbow). The position
of the “fi ngertip” is ray-traced to form two retinal images in which both the target and fi ngertip posi-
tions appear. These images are used to derive x, y, and distance signals, which are controlled by a visual
system that varies the reference signals entering the three kinesthetic higher-order control systems.

THE CONTROL SYSTEMS IN ARM VERSION 1, ORIGINAL DOS VERSION

Arm One
Little Man One

C-language
DOS

2 Arm One—Little Man One—DOS / Calculations

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

Each of these systems senses its appropriate joint
angle, compares the sensor signal with the reference
signal given from higher-order systems, and produces
an output change in joint angle that is driven by a
“slowed proportional” output signal. The slowed-
proportional signal is computed by multiplying the
error signal by a gain factor, then letting the actual
output signal change a specifi ed fraction of the way
from its previous value toward the new value. The
outputs of all three systems are linked to the arm by
the procedure Link1to0, below.

In trigonometric calculations, there are 4096 angle
units per circle. All trigonometric functions are taken
from precomputed tables of integer values, scaled to
a maximum value of 4096.

Kinesthetic Azimuth control
(horizontal angle)

This procedure calculates the output signal of the
kinesthetic azimuth control system, which swings
the arm horizontally about a vertical axis passing
through the right shoulder. The reference signal,
r1b, is a global variable and is set by a higher-order
system. The perceived input azimuth “az” is set by
the procedure that links the fi rst-order output signals
to the environment, discussed below. The variable
i1b is a long integer (32-bit) temporary variable; the
error signal is multiplied by 100 and by the gain
(g1b), so that the computed next value of output is
100 times its actual size. This permits dividing by
slowing factors (s1b) of up to 100 without losing
precision. The result is divided by 100 to become
the real output signal (o1b).
procedure azimuth1;
begin
 p1b := az;
 {kinesthetic perception of lateral shoulder-

finger line’s angle}
 e1b := r1b – p1b;
 {e = error. r1b comes from a higher level}
 i1b := i1b + (longint(100)*g1b*e1b – i1b) div

s1b;
 if i1b > lim1b then i1b := lim1b;
 {set signal limits}
 if i1b < –lim1b then i1b := –lim1b;
 o1b := i1b div 100;
end;

Kinesthetic Elevation control

This procedure calculates the output of the system
that controls the angular elevation of the fi ngertip
above/below horizontal. T1 is the sensed and actual
angle of the upper arm relative to horizontal. T2 is
the angle between an extension of the upper arm and
the lower arm. Because the two parts of the arm are
assumed equal in length, the angle at the shoulder
from the upper-arm axis to the shoulder-fi nger line is
just half the external angle at the elbow, or T2/2. Thus
the sensed elevation perception, p1a, is perceptually
computed from the sensed joint angles T1 and T2: T1
+ T2/2. The remainder of the procedure is identical
in form to the azimuth control system; its reference
signal r1a comes from a higher-order system.
procedure vertical1;
begin
 p1a := t1 + (t2 div 2);
 {kinesthetic perception of vertical shoulder-

finger angle}
 e1a := r1a – p1a;
 {error = reference – perception}
 i1a := i1a + (longint(100) * g1a * e1a – i1a)

div s1a;
 if i1a > lim1a then i1a := lim1a;
 if i1a < –(lim1a + lim1a) then i1a := –(lim1a

+ lim1a);
 o1a := i1a div 100;
 {output signal}
end;

Kinesthetic Distance control

“Kinesthetic distance” is actually the elbow angle T2
(subtracted from 180 degrees); the actual distance
from shoulder to fi ngertip is given by 2*Ra*cos(T2/2),
where Ra is the radius of the upper arm (equal to
the lower arm). In Pascal, multiplication is always
indicated by an asterisk (*). When the elbow angle
changes, the elevation control system is disturbed, but
it alters the upper-arm angle (T1) to compensate for
the disturbance due to the change in T2. Thus when
the distance control system changes the elbow angle,
the fi ngertip moves straight out from the shoulder, the
elevation angle of the fi ngertip remaining constant.
This is accomplished without any explicit coordina-
tion between elevation and distance control and is a
natural consequence of feedback control.

 Arm One—Little Man One—DOS / Calculations 3

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

The relevant information is the deviation of the target,
in angle, from the line of sight, in the x (horizontal)
and y (vertical) directions.

The target position is set independently by the
user of this program, from the keyboard in ARMKEY.
EXE or from a joystick in ARM.EXE.

Vertical visual (head) tracking

The variable TRy is the angular Target deviation in
the y direction from the line of sight of the Right eye.
The output function is a pure time-integrator: the
output signal accumulates according to the size and
direction of the error signal. The reference signal is
set to zero, meaning that this system attempts to bring
the y target position to the line of sight (by moving
the head and thus the line of sight). If the reference
signal were nonzero, the head would move to keep the
target above or below the line of sight by the specifi ed
amount. The output signal becomes the head verti-
cal angle, “gazey,” in the Link1to0 procedure above.
Gazey is the angle that is used (after adjustment for
running off the ends of the trigonometric tables) in
the Environment Calculations section to compute
the vertical angle between the line of sight and the
direction to the target, TRy. The lower-order muscle
systems that make physical head angle follow the
output signal are assumed.
procedure gaze1y;
begin
 r1e := 0;
 p1e := TRy;
 {perceived y target deviation from gaze angle}
 e1e := r1e – p1e;
 i1e := i1e – e1e;
 {time-integration (with negative sign)}
 if i1e > lim1e then i1e := lim1e;
 if i1e < –lim1e then i1e := –lim1e;
 o1e := i1e div g1e;
end;

Horizontal visual (head) tracking

The variable TRx is the angular Target deviation in
the x direction from the line of sight of the Right eye.
The horizontal tracking system works exactly as the
vertical system does. Its output signal, o1d, becomes
the head horizontal angle through specifying “gazex”
in the Link1to0 procedure above. Gazex becomes the
angle used in the Environment Calculations section
to compute the horizontal angle between the line of
sight and the direction to the target, TRx.

procedure distance1;
begin
 p1c := 2048 – t2;
 {kinesthetic perception of shoulder-finger dis-

tance: inner angle at elbow. 2048 is equivalent
to 180 degrees.}

 e1c := r1c – p1c;
 i1c := i1c – (longint(100)*g1c*e1c – i1c) div

s1c;
 if i1c > lim1c then i1c := lim1c;
 if i1c < 0 then i1c := 0;
 o1c := i1c div 100;
end;

Linking fi rst-order systems
to the physical arm.

Here the loops are closed for each of the kinesthetic
control systems. The output of the elevation (verti-
cal angle) system, for example, becomes T1, the
angle at the upper arm. If we were modeling the
still-lower-order systems, this is where the outputs
of the kinesthetic joint-angle control systems would
become reference signals for lower-order force-control
systems, and where the physical dynamics of the arm
would be introduced.

This linking procedure also links the “gaze” con-
trol systems to their environmental effect: gazex is
the azimuth (horizontal) head angle, and gazey is the
elevation (vertical) head angle.
procedure link1to0;
begin
 t1 := o1a; {vertical}
 az := o1b; {azimuth}
 t2 := o1c; {distance}
 gazex := o1d; {gaze x}
 gazey := o1e; {gaze y}
end;

II: THE HEAD ANGLE (VISUAL
TRACKING) CONTROL SYSTEMS

These two systems use visual information about the
x and y positions of the target relative to the line of
sight from the right eye only. It would be just as
easy to compute this information as the average as
seen by both eyes, which would permit tracking to
continue with one eye closed. These systems keep
the right eye looking directly at the target, by turning
and tilting the head.

The visual information is derived in a way de-
scribed below under “Environment calculations.”

4 Arm One—Little Man One—DOS / Calculations

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

procedure gaze1x;
begin
 r1d := 0;
 p1d := TRx;
 {perceived x target deviation from gaze angle}
 e1d := r1d – p1d;
 i1d := i1d – e1d;
 {time-integration}
 if i1d > lim1d then i1d := lim1d;
 if i1d < –lim1d then i1d := –lim1d;
 o1d := i1d div g1d;
end;

III: LATERAL AND VERTICAL
VISUAL ARM CONTROL

The higher-level systems that move the fi nger side-
ways and vertically on the basis of visual information
sense the deviation of the fi nger from the target as
seen by the right eye. The average deviation seen by
both eyes could also be used, but by using the right
eye we imitate the effect of “dominance” (and speed
the calculations).

These two systems are conceptually of a higher
order than the visual head control systems. The visual
head control systems use only information about the
target angular position relative to the center of vision
of the right eye; this is an “absolute” position in the
eye’s framework, and depends on the direction of gaze.
The systems we now consider sense an invariant in
the eye’s framework, namely, the difference in position
between two objects in the same fi eld of vision, the
fi nger and the target. This angular relative distance
is invariant (to a fi rst approximation) with respect to
the absolute position of the images on the retina, and
hence is unaffected (nearly) by the head’s movements.
The lateral visual control system is organized to bring
the horizontal component of fi nger-target angular
separation to zero by moving the arm in azimuth
(swinging it horizontally); the vertical visual control
system is organized to bring the vertical component
of fi nger-target angular separation to zero by mov-
ing the elevation angle of the line extending from
shoulder to fi ngertip.

Neither of the two physical arm movements is
exactly in the direction needed to correct either visual
error; as a result, correcting one visual error disturbs
the other visual control system. Nevertheless, the two
systems maintain their own perceptual variables in the
reference state, zero. There are no output computa-
tions that compensate for the “wrong” directions of
movement; this is accomplished entirely by visual
feedback effects.

If non-zero reference signals (r2a and r2b) were
used, the fi nger would track the target, but at a fi xed
distance vertically and horizontally from it.

Horizontal visual target-fi nger control

This system perceives the difference in target and
fi nger angles in the x direction. It integrates the error
signal computed relative to a reference signal of zero.
The output signal that results, o2b, becomes the refer-
ence signal for the kinesthetic azimuth control system;
the link occurs in the procedure Link2to1, below.

The perceptual signal is adjusted for “size constan-
cy”. If the Finger Left-Right angle difference FLRd
is greater than 10 angle units (it is, over the normal
range of distances), the Target signal is computed as
the produce of the Target x displacement in the Right
eye, TRx, multiplied by a constant and divided by
the angle difference FLRd. That is nearly the same
as multiplying the angular deviation by the perceived
target distance. The perceived Finger displacement
in x seen by the Right eye, FRx, is also multiplied by
the distance in this way. The perceptual signal p2b is
the difference between these two quantities.

The function “dmd” is a “double-multiply-divide”
assembly-language macro that multiplies the fi rst
two arguments to give a 32-bit intermediate result,
which is then divided by the third argument to give an
integer (16-bit) result. This preserves accuracy when
multiplying an integer by a ratio of integers.
procedure azimuth2;
begin
 r2b := 0;
 if FLRd > 10 then
 p2b := dmd(TRx,90,TLRD) – dmd(FRx,90,FLRd);
 {perceived finger –target azimuth x constant x

distance}
 e2b := r2b – p2b;
 if e2b > errlim then e2b := errlim
 else if e2b < –errlim then e2b := –errlim;
 i2b := i2b – e2b;
 if i2b > lim2b then i2b := lim2b;
 if i2b < –lim2b then i2b := –lim2b;
 o2b := i2b div g2b;
end;

Vertical visual target-fi nger control

This system works exactly as above, but perceives
the vertical angular separation between fi nger and
target. Its output, o2a, becomes the reference signal
for the kinesthetic vertical position control system.
The function “dmd” is explained above.

 Arm One—Little Man One—DOS / Calculations 5

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

procedure vertical2;
begin
 r2a := 0;
 {reference target-finger vertical angle}
 if FLRd > 10 then
 p2a := dmd(TRy,90,TLRd) – dmd(FRy,90,FLRd);
 {perceived target-finger vertical angle x con-

stant x distance}
 e2a := r2a – p2a;
 if e2a > errlim then e2a := errlim
 else if e2a < –errlim then e2a := –errlim;
 i2a := i2a – e2a;
 if i2a > (lim2a + lim2a) then i2a := lim2a +

lim2a;
 if i2a < –lim2a then i2a := –lim2a;
 o2a := i2a div g2a;
end;

IV: VISUAL DISTANCE CONTROL

The fi nal control system uses relative target-fi nger
angular separations from both eyes, information that
is invariant with respect to location of the images on
the retina, to a fi rst approximation.

The visual distance control system uses the visual
parallax from binocular viewing of both Finger and
Target. Only information about deviations in the x
(horizontal) direction is used. Visual distance is the
reciprocal of the angular difference between left-eye
and right-eye images of the same object. For the
fi nger, the angles relative to the direction of gaze
are FLx and FRx, and for the target, TLx and TRx.
The information obtained from each eye contains
the angle between fi nger and target: TLx – FLx, or
TRx – FRx. As mentioned, only the latter is used
for lateral visual control of the fi nger relative to the
target. If each relative angle is represented by a signal,
then subtracting the left-eye signal from the right-eye
signal is equivalent to computing (TRx – FRx) – (TLx
– FLx), which by simple transposition is (TRx – TLx)
– (FRx – FLx). Thus we get the difference between
parallaxes of the fi nger and target, without requiring
that the eye be looking directly at either object. This
difference in parallaxes corresponds to the relative
distance in depth between fi nger and target (in a
nonlinear way). When this difference is zero, the
fi nger is at the same distance as the target.

Depth information can be obtained without visual
tracking by the head, if the objects are somewhere
in the visual fi eld. Visual tracking has the effect of
keeping the baseline between the eyes nearly perpen-
dicular to the line of sight to the target, which changes
the “horopter” of classical visual research (surface of
equal apparent distances) almost to a sphere. Visual
tracking was ignored in the classical analysis. With
visual head tracking, distance control works better
over a wider lateral range of angles because the effec-
tive baseline does not change (except during transient
errors).

To simplify computations, the difference in target
angle is computed outside this procedure from the
basic angle information about target and fi nger as seen
by each eye. The method of subtracting the target-
to-fi nger angle in one eye from the target-to-fi nger
angle in the other eye would be exactly equivalent.
In this procedure, TLRd is the Target Left-Right
deviation in angle, and FLRd is the same deviation
for the fi nger.

The quantity REx – LEx is the baseline distance
between the eyes.

FLRd is defi ned as FLx – FRx, and TLRd as TLx
– FLx. Distance is obtained by multiplying the eye
separation, (REx – LEx) by a constant and dividing
the product by FLRd or TLRd.

As mentioned above, the function “dmd” is a
“double-multiply-divide” assembly-language macro
that multiplies the fi rst two arguments to give a 32-bit
intermediate result, which is then divided by the third
argument to give an integer (16-bit) result.

Note that the perceptual signal p2c is the differ-
ence between perceived target distance and perceived
fi nger distance. It is therefore a perception of relation-
ship. This control system also works properly if we
defi ne the perceptual signal as p2c := TLRD – FLRd
(i.e., the reciprocal of distance). The sense of the error
signal has to be reversed. This redefi nes the variable as
a “closeness” variable—the larger either angle-differ-
ence is, the closer the object is. With this defi nition,
the loop gain rises rapidly as the fi nger approaches the
eyes, so performance is less uniform over the whole
range of distances. But the nonlinearity has no other
effect: when the perception is zero (matching the zero
reference signal), the fi nger is at the same perceived
distance as the target in either case.

6 Arm One—Little Man One—DOS / Calculations

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

procedure distance2;
var u,v: integer;
begin
 r2c := 0;
 u := dmd(REx – LEx,1024,FLRd);
 {finger distance}
 v := dmd(REx – LEx,1024,TLRd);
 {target distance}
 p2c := (v-u);
 {relative distance}
 e2c := r2c – p2c;
 if e2c > errlim then e2c := errlim
 else if e2c < –errlim then e2c := –errlim;
 i2c := i2c – e2c;
 {compute total integral first}
 if i2c > lim2c then i2c := lim2c;
 if i2c < 1 then i2c := 1;
 o2c := i2c div g2c;
 {reduce by integration factor}
end;

Linking to Level 1.

The output signals of the higher-order control sys-
tems become the reference signals for the kinesthetic
control systems in the following procedure, which
closes all the remaining loops except for the envi-
ronmental part:
procedure link2to1;
begin
 r1a := o2a; {vertical angle}
 r1b := o2b; {azimuth}
 r1c := o2c; {distance}
end;

VI: ENVIRONMENTAL CALCULATIONS

By far the most complex computations in this model
concern the physical properties of the body and its
environment.

When the fi gure is viewed from its right side, the
body is placed 200 units to the left of the origin and
the positive z coordinate extends to the right. The
positive y coordinate extends upward, and the positive
x coordinate extends toward the viewer.

Before the “Environment” procedure is entered,
the gaze angles that have been computed as output
signals from the two head-angle control systems are
used to rotate the head and eyes in space, fi rst about
the x axis and then about the y axis. Using the other
sequence of rotations would tilt the head sideways.
The result is a new set of eye positions, used below,
and a stored polygon of x-y coordinates for drawing
the head and eyes. The Left Eye x-coordinate after
rotation is symbolized LExr, and so on.

Computing fi ngertip position

The kinesthetic control systems make perceived
joint angles match their given reference signals, but
know nothing of where that places the elbow or the
fi ngertip. From the given angles and the radius of
the upper and lower arm (identical), we must fi rst
calculate where the fi ngertip will be in space. The
origin of this space is a point 200 units distant (in
the “z” coordinate) from the place where the neck of
the fi gure meets the body (coordinates 0,0,–200, in
x,y, and z). The shoulder around which the upper
arm swivels is located at x = 80, y = 0, and z = –200.
Note that these calculations are purely physical and
are independent of the behavior-model.

In the following, SH is shoulder position and FI is
fi nger position. Expressions like sine[x] and cosine[x]
do not refer to the built-in trigonometric functions of
Pascal (note spelling and use of brackets rather than
parentheses), but to precomputed tables; “x” would
be an index into the table, where index values can
run from –2048 (–180 degrees) to 2047 (+179.91
degrees). Readers converting to the “C” language
will have to compensate for these negative indices,
which “C” cannot use.

“Scale” is a constant equal to 4096, and represents
the one-way peak value of sines or cosines in the
stored tables.

 Arm One—Little Man One—DOS / Calculations 7

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

procedure environment;
begin

 t3 := t1 + t2 div 2; {angle, horiz to shoulder-
finger line}

{Find x,y,z coordinates of fingertip}

 rf := dmd(ra + ra,cosine[t2 div 2],scale);
 {radius, shoulder-finger}

 FIy := SHy + dmd(rf,sine[t3],scale);
 {y coordinate of finger}
 temp := dmd(rf,cosine[t3],scale);
 FIx := SHx + dmd(temp,sine[az],scale);
 {x coordinate of finger}
 FIz := SHz + dmd(temp,cosine[az],scale);
 {z coordinate of finger}
 if FIz < LEz + 25 then FIz := LEz + 25;
 {keep finger in bounds}
if FIz < REz + 25 then FIz := REz + 25;

{Find x,y,z coordinates of elbow}

 ELy := SHy + dmd(ra,sine[t1],scale);
 temp := dmd(ra,cosine[t1],scale);
 ELx := SHx + dmd(temp,sine[az],scale);
 ELz := SHz + dmd(temp,cosine[az],scale);

 {Fill in 3-dimensional polygon for arm
points}

 arm3[1].x3d := SHx; arm3[1].y3d := SHy; arm3[1].
z3d := SHz;

 arm3[2].x3d := ELx; arm3[2].y3d := ELy; arm3[2].
z3d := ELz;

 arm3[3].x3d := FIx; arm3[3].y3d := FIy; arm3[3].
z3d := FIz;

The fi nal steps above fi ll in an array containing a series
of x,y,z coordinates: the shoulder, the elbow, and the
arm positions. This is later rotated according to the
viewing angle, then projected into two-dimensional
x-y coordinates for display.

The environment procedure then continues:

Calculating target, fi nger angles
relative to gaze

The fi rst step is to compute x,y,x coordinates of the
target and fi nger position relative to each eye. TXL,
for example, means Target X coordinate relative to
Left eye.

A notation like LExr means Left Eye, x coordinate,
rotated, calculated as explained above before entering
this procedure.

{Calculate temporary variables for computing eye
angles}

 TXL := TAx – LExr; TXR := TAx – RExr;
 TYL := TAy – LEyr; TYR := TAy – REyr;
 TZL := TAz – LEzr; TZR := TAz – REzr;

 FXL := FIx – LExr; FXR := FIx – RExr;
 FYL := FIy – LEyr; FYR := FIy – REyr;
 FZL := FIz – LEzr; FZR := FIz – REzr;

In the following, the procedure “rotateimage” is en-
tered with the x,y,z coordinates of an object, target
or fi nger as seen by one eye, and the angles of rota-
tion theta2 and phi2, which are simply copies of the
two gaze angles, gazex and gazey (compensated for
overrunning the limits of the sine and cosine tables).
The fi rst two arguments are passed “by reference”
and indicate the returned values. These values are the
angles in x and y of the object relative to the direction
of gaze. The angles thus represent the displacement
of the objects from the center of the fi eld of view for
each eye. This routine makes use of the rotated posi-
tions of the eyes, which are global variables.

The fi nal two statements compute the parallax
angles of fi nger and target from the angle variables
just calculated.
 {Find angles, finger and target, right eye}

 rotateimage(TRx,TRy,TXR,TYR,TZR,theta2,phi2);
 rotateimage(FRx,FRy,FXR,FYR,FZR,theta2,phi2);

 {Find angles, finger and target, left eye}

 rotateimage(TLx,TLy,TXL,TYL,TZL,theta2,phi2);
 rotateimage(FLx,FLy,FXL,FYL,FZL,theta2,phi2);

 {Find depth angles, eyes to target and finger,
radians}

 FLRd := FRx – FLx;
 TLRd := TRx – TLx;

 end; {of environment procedure}

8 Arm One—Little Man One—DOS / Calculations

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

VII: COMMENTS ON THE MODEL

The discussions above have reviewed the main
calculations for each of the eight control systems,
and for the environmental part of the control loops.
The Registered User version of this demonstration
contains all the source code (Borland International’s
Turbo Pascal 5.0) including the special Units used.
Most of this code is occupied with doing the rota-
tions, calculating positions for plotting, initializing,
and allowing for editing of parameters.

The plots that are displayed on the screen show
the horizontal angle, vertical angle, and distance-dif-
ferential between the fi nger and the target, as seen by
the modeled person.

It would be possible to assign two separate con-
trol systems to each eye, while retaining control of
the head as a whole. The eyes could then converge
on the target (or the fi nger), and track the target in-
dependently of the head. This would lead to some
interesting studies of the effect of relative loop gains in
the head and eye control systems. The extra plotting
required, as well as the extra rotation and control-
system calculations, however, would slow the display.
In later versions of this program, eye convergence
will be introduced—although to preserve speed,
much of the program might have to be converted to
assembler language, or to a somewhat faster language
such as “C”.

A further refi nement of the model will involve
introducing the lower-order control systems that con-
vert joint-angle position error signals into commands
to force-control systems. These systems will need the
physical properties of the arm to be calculated—mass
and moments of inertia. This will undoubtedly slow
the display considerably, but will be worth doing just
to see what problems arise. This would increase the
number of levels in the model to about fi ve, and with
eye-convergence included, the number of control
systems to about 15.

VARIABLE DEFINITIONS
 halfside, {half of one side of box}
 FIx, {x position of finger}
 FIy, {y position of finger}
 FIz, {z position of finger}
 TAx, {x position of target}
 TAy, {y position of target}
 TAz, {z position of target}
 REx, {right eye x coordinate}
 REy, {right eye y coordinate}
 REz, {right eye z coordinate}
 LEx, {left eye x coordinate}
 LEy, {left eye y coordinate}
 LEz, {left eye z coordinate}
 RExr, {right eye rotated x coordinate}
 REyr, {right eye rotated y coordinate}
 REzr, {right eye rotated z coordinate}
 LExr, {left eye rotated x coordinate}
 LEyr, {left eye rotated y coordinate}
 LEzr, {left eye rotated z coordinate}
 ELx, {x coordinate of elbow}
 ELy, {y coordinate of elbow}
 ELz, {z coordinate of elbow}
 SHx, {x coordinate of shoulder}
 SHy, {y coordinate of shoulder}
 SHz, {z coordinate of shoulder}
 ra, {length of upper and lower arms}
 t1, {angle from nadir to upper arm}
 t2, {angle, projection of upper arm to lower arm}
 t3, {angle from shoulder to finger}
 az, {azimuth angle of arm}
 TLRd, {depth angle to target}
 FLRd, {depth angle to finger}
 TRx, {azimuth angle, right eye to target}
 TLx, {azimuth angle, left eye to target}
 FRx, {azimuth angle, right eye to finger}
 FLx, {azimuth angle, left eye to finger}
 TRy, {vertical angle, right eye to target}
 TLy, {vertical angle, left eye to target}
 FRy, {vertical angle, right eye to finger}
 FLy, {vertical angle, left eye to finger}
 TXL,TYL,TZL,FXL,FYL,FZL,
 {positions relative to eyes}
 TXR,TYR,TZR,FXR,FYR,FZR: integer;
 p1a,p1b,p1c,p1d,p1e,e1a,e1b, e1c,e1d,e1e,o1a,o1b

,o1c,o1d, o1e,r1a,r1b,r1c,r1d,r1e: integer;
 {lower order control}
 p2a,p2b,p2c,e2a,e2b,e2c, o2a,o2b,o2c,r2a,r2b,r2c:

integer;
 {higher order control}
 g1a,g1b,g1c,g1d,g1e,s1a,s1b,s1c,s1d,s1e,
 {gain constants}
 g2a,g2b,g2c: integer;

 Arm One—Little Man One—DOS / Calculations 9

© 1989 William T. Powers File arm_one_dos_calc.pdf from www.livingcontrolsystems.com March 2004

SOME BASIC CONCEPTS OF
PERCEPTUAL CONTROL THEORY

A control system is an organization that

1 Senses some external variable through an Input
Function that represents one environmental at-
tribute as a variable perceptual signal;

2 Compares the perceptual signal against a given
reference signal to generate an error signal;
and

3 Operates on the error signal with an Output
Function to generate an output signal.

The output signal may serve as the reference signal
for lower-order control systems (in a hierarchy of
control), or at the lowest level of control may actuate
muscles that move the limbs or apply forces to the
environment.

The effects of the output signal coming from a
control system alter the world outside it. Those ef-
fects, in turn, alter the variable that is being sensed,
thus altering the perceptual signal. If the control
system is properly organized, its output effects will
always tend to bring the perceptual signal closer in
value to the reference signal, reducing the error signal
that is driving the action. Disturbances that affect the
input to the control system cause error signal changes
that make the action of the system strongly oppose
the effects of the disturbance. Thus control systems
control their own inputs relative to an intended state
set by the reference signal.

The “loop gain” of a control system determines
how energetically it will oppose disturbances and
how accurately it will maintain its perceptual signal
in a match with its reference signal. The main deter-
minant of loop gain is the sensitivity of the Output
Function to error signals. The more output that a
given error signal can produce through the Output
Function, the smaller the fi nal error signal will be.

The main thesis of perceptual control theory is
that organisms are control systems at every level of
organization. All behavior is employed to control the
perceptions that behavior affects. There is no such
thing as “responding to a stimulus.” Stimuli are actu-
ally disturbances of controlled perceptions.

