
© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

There is one program accompanying this manual.
To run the program you must have a computer com-
patible with an IBM AT (80286 processor), 512K
of memory, a Hercules-compatible monochrome
graphics screen or a CGA, EGA, or VGA-compatible
graphics screen, and either a mouse, a game port with
a good joystick or one of the two supported analogue-
to-digital boards with a control handle. In Appendix
A, the required equipment is described in detail, with
operating instructions.

Copy the master program onto working fl oppy
programs or into an appropriately-named subdirec-
tory on a hard program. Copy ALL the fi les. You can
run from a fl oppy disc or the hard disc. The name of
the program is DEMO2.EXE. Delete ADCONFIG,
restart program to reconfi gure. Type README for
more installation information.

If used for teaching or commercial purposes, the
price of this material is $60. It is understood that this
amount will be remitted for each class-term or each
signifi cant other use made of it, and that the user will
not re-sell any of the material. Payment is strictly on
the honor system; the program may be reproduced
and given away freely.

Some comments on modeling

The term “model” can mean many things, from
an ideal to a statistical analysis to a miniature rep-
lica. We will use it here in the engineering sense: a
simulation of a behaving system’s components. The
term simulation means a working model—one that
behaves through time. But it does not mean recre-
ating all the details of the real behaving system. To

DEMO2:
Modeling control

build a model, we imagine taking a system (or more
often just part of a whole behaving system) apart into
what we think are its major components. We then
defi ne each component in terms of variables that act
on it, and another variable that represents its action.
The action of any one component depends on the
variables that affect it. The basic requirement is to
state how the action of a component depends on the
variables that affect it; how its output depends on
its inputs. It isn’t enough to claim that the output
depends on the inputs; to make a proper model we
must try to guess at the details, even though the fi rst
guess is likely to be wrong.

Success in modeling depends on breaking the
system down to a level that is neither too coarse nor
too fi ne. If we can fi nd a level of analysis that is just
right, we will be able to defi ne each component in
a way simple enough to understand, yet detailed
enough to reveal relationships that are not trivial.
When we have a model that works in the essential
respects like the real system, we can then think of
breaking each component down further, looking for
a deeper level of understanding. Or we can try to
add to the model so that more of the total behavior
of the whole system is represented. We could go in
either of these directions with profi t. The fi rst step,
of course, is to fi nd one model that works. That is
what Part 2 is about: modeling the behavior called
compensatory tracking.

What does it mean to say that a model “works?” It
means that we should be able to compare at least some
of the variables in the model with the real variables
they represent, and show that when the model oper-

In Demo2, a block diagram of a control system is built up step by step. At each step, the user can manipu-
late the mouse to explore the properties of the model, and change parameters from the keyboard. After the
complete model has been constructed, the program fi nishes by showing how the behavior of the model can
be matched to that of a real person.

A TEACHER’S TUTORIAL AND GUIDE, PART 2

2 DEMO2: Modeling control

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

ates according to its own rules, its variables behave the
same way as the real ones. We may propose variables
in the model that have no observable counterparts,
but there must be at least several variables that do have
real counterparts. Otherwise a comparison with the
real system would be impossible.

Models—simulations—behave through calcula-
tion. Given starting conditions for the variables, and
given the rules that make some variables depend on
each other, we apply our defi nitions of the components
to convert hypothetical values of input variables into
deduced values of output variables. The output vari-
ables become input variables for other components, al-
lowing us to continue the calculations one component
after another. In a control-system model we eventually
fi nd ourselves back where we started, having computed
our way around a closed loop. We start the next round
of calculations with the values of the variables that
resulted from the fi rst round. Each round gives us
a sample of all the variables at one moment in time.
Doing the calculations over and over develops a picture
of how the variables change with time.

There are traps in using a digital computer to
simulate a system with components that actually
behave simultaneously and continuously through
time. The computer can compute only one relation-
ship at a time, so we must do the calculations for the
various components in sequence. We have to do the
computations so that the result is as if they were all
done simultaneously. On a digital computer we can
only approximate this simultaneity. As long as we are
computing in a straight line, where one step leads to
the next in a straightforward way, there is no problem
if we make the rounds of calculation represent small
enough intervals of time. But when the loop closes
on itself, when we compute the value of the same
variable we started with, the same variable is called
on to have two different values at once.

In the real system, every variable is always be-
ing affected by variables just prior to it in the chain
of calculations. If we could do parallel or analog
computations this fact would take care of itself. But
when we complete a round of digital calculation, for
a moment we have the old value of a variable and
its new value being different. How we handle that
makes a lot of difference in the results. If we overlook
this problem, we can reach wrong conclusions about
how much feedback there can be in a closed-loop
system, as well as making other major mistakes. These
mistakes come about from not treating physical time
correctly—from confusing computing cycles with the
passage of physical time.

In the fi rst seven steps of Part 2, we will build up
a model of a person doing compensatory tracking,
the same task we saw over and over in Part 1. The
model will represent only a few aspects of the whole
person. The same model applies to many other kinds
of control tasks, but we will stick to the simplest
one. As we construct the model, the problem just
described will come up at the step where the loop is
closed. The program will automatically, and behind
the scenes, take care of physical time so that the cor-
rect outcome happens. Then the next two frames will
show how this adjustment is made, so you can use
this method in other applications. Part 2 ends with
a comparison of the behavior of this model with the
behavior of a real person—you, presumably—doing
the tracking task. We will see how simulation allows
us to characterize a rather complex ongoing behavior
in terms of just a few parameters. When you fi nish
this part, you will understand how modeling can be
used to explore real systems.

Modeling the environment

We can construct a model of the environment (outside
the behaving system) very easily, because everything
that matters there in compensatory tracking is com-
pletely known (at least to the programmer of these
demonstrations). We know that the control handle
affects the cursor position by one path, and that an
independent disturbance affects it by another path.
The position of the cursor is completely specifi ed at
every instant by the angle of the control handle and
the magnitude of the disturbance.

In the model, cursor position, handle position,
and disturbance magnitude are represented by three
numbers, which we symbolize c, h, and d. The
physical connections between handle and cursor,
and between disturbance and cursor, are represented
as two constants: Kf for feedback constant, and Kd
for disturbance constant. Kd and Kf begin at 1, so
the initial relationship is just c = h + d.

After the text presentation, a graphic is displayed.
You can use the control handle, joystick or mouse to
position the little handle in the display. The pictorial
handle is a frill; all that really matters is the number, h,
representing the real handle position. The constants
are shown in boxes. Coming out of each box is a
line labeled h * Kf or d * Kd. The number shown
at the output of each box is the amount of effect of
each variable on the cursor. The effect will be differ-
ent from the variable if the corresponding K-value is
different from 1. The effects add. As you change the

 DEMO2: Modeling control 3

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

of the cursor, and that the result is generation of a
real-time signal that always corresponds in magnitude
to the position of the cursor—the state of the input
quantity. As far as the behaving system is concerned,
this signal is the cursor position. No matter what is
being sensed, the dimension of change that is under
control is represented by a single signal that has one
value at a time.

There is a box with a constant, Ki, at the input. It
represents the sensory apparatus. The value of Ki is 1,
and although you can change it to see the effect (when
the fat arrow points to the input box), you may as well
leave it at 1. When we pass from the physical cursor
to the signal, we also change the physical units—from
a measure of distance to whatever Nervous System
Unit (NSU) we adopt for neural signals. In the real
nervous system we might fi nd that a movement of
one centimeter of the cursor caused a change in the
neural signal of 37.2 impulses per second. We would
then defi ne one NSU as 37.2 impulses per second.
A cursor position of 1.5 centimeters would result
in a neural signal of 55.8 impulses per second; that
would be 1.5 NSU. If we choose the right units for
one NSU, then the input factor can always be 1.
Of course we then have to measure all signals inside
the system in the same units (assuming that we can
do so in the real system). In the model we just say
that one unit of perception equals one unit of cursor
position.

With Ki = 1, you can see that the cursor posi-
tion is directly represented by the magnitude of the
perceptual signal p.

The process of comparison

We now have a perceptual signal whose magnitude
represents at every instant the position of the cursor.
What we need now is a way to represent the desired
position of the cursor. As the cursor position is known
to the system only as a perceptual signal, it makes
sense to use another signal to represent the desired
position. This second signal is called the reference
signal, r. It is set now to 0, but you can change that
value either up or down in magnitude when the fat
arrow points to it.

The perceptual signal p and the reference signal
r enter a new box called the “comparator.” This box
represents a function that subtracts the magnitude
of the perceptual signal from the magnitude of the
reference signal, and passes the resulting difference to
its output in the form of an error signal, e. The error
signal is thus given by e = r – p.

handle position, you can see the value of h and of h
* Kf changing. The disturbance d and the effect d *
Kd change all by themselves. You can use the space
bar to freeze h and d, to study the numbers. Another
space resumes the action.

You can also use the up and down arrow keys to
make a fat arrow on the display point to either of the
constants. Make sure that the Num Lock is not active
if you use the cursor/numerical keypad. Whichever
constant is indicated, you can use the left and right
arrow keys (or + and –) to increase or decrease it.
The fat arrow isn’t very conspicuous, so make sure
you fi nd it.

As you change the constants (which can be done
whether h and d are frozen or active), you can check
to see that the cursor position is always given by c = h
* Kf + d * Kd. Play with this until you begin to get a
feel for the relationships. With Kf large, for example.
the cursor is very sensitive to handle movements. The
variables c, d and h in the model depend in real time
on the actual cursor position, disturbance, and handle
position, and the Ks are the real sensitivity factors, so
you can see how the model’s behavior corresponds to
the real behavior.

Modeling perception

The next graphics frame (after the text introduction)
now begins to model the behaving system (above
the dashed line). Eventually we will have a model
that shows how handle position depends on cursor
position via you, the behaving system. We will be
guessing that the action depends on perceiving cur-
sor position, comparing what is perceived with a
reference position, and converting the difference into
output. Right now we are modeling the perceiving
component of the system.

The cursor is now called the input quantity qi,
and the handle is called the output quantity, qo.
These more general labels are meant to suggest that
there can be other quantities under control, and other
means of acting. The same kind of diagram would
apply. In part 1 you saw different kinds of qi that
were controllable—aspects of geometric fi gures, the
pitch of a sound, the value of a printed number.

In this model, a perception is a signal inside the
behaving system. This signal depends on the state of
the cursor or input quantity. As the input quantity
changes, the signal changes. The signal is the per-
ceptual signal p. It can change only in magnitude.
If effect, we’re suppose that there are sensors and
neural computers dedicated to sensing the position

4 DEMO2: Modeling control

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

There are two ways to vary the error signal. If you
change the input quantity by any means, the error
signal will change in the opposite direction (because
the comparator is subtracting p). If you freeze the
handle and disturbance using the space bar, (with
the input quantity somewhere between plus and
minus 100), you can also vary the error signal by
changing the reference signal. Because the reference
signal enters the comparator with a positive sign, the
error signal will change in the same direction as the
reference signal.

The process of comparison

We now have a perceptual signal whose magnitude
represents at every instant the position of the cursor.
What we need now is a way to represent the desired
position of the cursor. As the cursor position is known
to the system only as a perceptual signal, it makes
sense to use another signal to represent the desired
position. This second signal is called the reference
signal, r. It is set now to 0, but you can change that
value either up or down in magnitude when the fat
arrow points to it.

The perceptual signal p and the reference signal
r enter a new box called the “comparator.” This box
represents a function that subtracts the magnitude
of the perceptual signal from the magnitude of the
reference signal, and passes the resulting difference to
its output in the form of an error signal, e. The error
signal is thus given by e = r – p.

There are two ways to vary the error signal. If you
change the input quantity by any means, the error
signal will change in the opposite direction (because
the comparator is subtracting p). If you freeze the
handle and disturbance using the space bar, (with
the input quantity somewhere between plus and
minus 100), you can also vary the error signal by
changing the reference signal. Because the reference
signal enters the comparator with a positive sign, the
error signal will change in the same direction as the
reference signal.

Use the up-down arrow keys to set the fat arrow
at Kd, then set Kd to 0 with the left arrow key. Then
use the up arrow key to point back to the reference
signal. Now you can alter the error signal by moving
the handle without the disturbance confusing matters.
By adjusting either the reference signal or the input
quantity, you can make the error signal approach zero
(it’s easier with the input quantity, as the reference
signal changes in steps of 10 NSU).

Wherever you set the reference signal, there is a
value of the input quantity that will make the error
zero. All that is required is for the perceptual signal
to match the reference signal. Then if the perceptual
signal goes above the reference signal, the error sig-
nal will go negative, and if p goes below r, e will go
positive. The error signal therefore represents by its
magnitude the system’s judgment as to whether the
perceptual signal is too small (positive error), too large
(negative error) or just right (zero error).

There are no adjustments in the comparator; any
scaling factors here can be absorbed into the other
system constants.

The output function

The error signal carries information telling whether
the perceptual signal is too small, too large, or just
right; it therefore also tells whether the cursor is below,
above, or at the intended position. The last part of the
system converts this information into some amount
(and direction) of output action.

At the output there is a box representing the
system’s output function. We treat it here as a simple
constant of proportionality, Ko, initially set to 3.00.
You can change this constant when the fat arrow
points to it. The output constant converts the error
signal into a handle position, or in the more general
notation, to a magnitude of the output quantity qo.

In this step the output quantity is shown twice,
once as an input to the environment box (Kf), and
again as an output of the system. In both places it is
called qo. Obviously when the loop is closed, these
two numbers will be just one number, the output
quantity. For now we leave the loop broken, in order
to present a small puzzle.

You will notice that the feedback factor Kf has
been set to zero so the handle has no effect. All that is
affecting the input quantity and the perceptual signal
is the disturbance. As the disturbance varies, you can
watch the input quantity, the perceptual signal, the
error signal, and the output quantity changing.

Here is the puzzle. Try adjusting the output fac-
tor Ko until you think the output is varying in the
way that would be needed to counteract the effects
of the disturbance if the loop were closed and Kf
were set back to 1. Ignore the number next to the
Kf box—just compare the system’s output with the
disturbance magnitude. You can make this easy by
freezing the disturbance variations with the space
bar—you can still change Ko, and the computations
will update the output quantity qo.

 DEMO2: Modeling control 5

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

The point isn’t to embarrass anyone, but to show
that common sense doesn’t work very well when it
comes to control systems. It stands to reason that if
there is, for example, a disturbance of +25 units, the
output quantity should be –25 units if the percep-
tual signal is to match a reference signal of zero (the
reference signal should be at zero). To achieve this
equal-and-opposite relationship with the loop open,
you will fi nd that Ko has to be set to 1.00. This is
the reasonable value, but as we will see next, it results
in very poor control.

Closing the feedback loop

Now the function key F1 is active. At the system’s
output you will fi nd the fat arrow and the legend
OPEN, meaning that the feedback loop still hasn’t
been closed. Press F1. The legend will change to
LOOP, showing that the handle position is now being
determined by the system’s output. You no longer
can have any effect on the model’s handle position
(until you press F1 again). The two “qo” numbers
will now be identical.

The output constant Ko is initialized at 1.00. If
you found the “most reasonable” answer to the puzzle
in the previous frame, Ko is now where you set it.
You will see the handle varying position by itself, as
qo changes. The system is now operating as a closed-
loop control system, counteracting the effects of the
disturbance on the input quantity.

But the model isn’t controlling very well. Look
at the error signal. It has the same size as the per-
ceptual signal. By freezing the action with the space
bar, you can see that the error is half the value of the
disturbance—only half of the disturbance is being
counteracted. And look at the real cursor. It is not
staying very close to the center position.

Even though the fat arrow is not pointing at the
output box, you can still change the output factor
Ko using the left-right arrow keys. Now use the
right arrow key to increase the value of Ko. One
nice way to see the effect is to freeze the changes in
disturbance with the space bar (this also freezes your
control effects, but they’re not active now anyway).
Freeze it when there’s a fairly large amount of error,
like 15 units. Now the loop is still being computed
over and over but the disturbance is constant.

As you increase Ko, you will see that the error gets
smaller. By the time you have run Ko up to about 10,
the output quantity has almost stopped increasing; it
will be nearly equal and opposite to the disturbance
magnitude. Go on increasing Ko to its limit of 50.00.

The error signal just gets smaller and smaller, until it
begins wavering near 1 or 2 units. This means that
the handle position has changed until it is canceling
all but about 1 or 2 units of the effect of the distur-
bance. You will see that over a range of Ko from 10
to 50, there is very little change in the error signal or
the output quantity.

Press the space bar to start the action again. You
will see that the error signal hardly changes as the
disturbance changes—it stays within plus or minus 2
units of zero except when the disturbance is changing
most rapidly. Now we have a good control system. It
is keeping its own perceptual signal nearly in a match
with the reference signal (which should still be zero).
The real cursor is now being run by the model—you
can see how well it is being controlled.

With Ko set to 50.00 (make it 50 if it isn’t), press
F1 to open the loop again and watch the system’s out-
put quantity. Freeze the disturbance with the space
bar. You will see the output quantity changing until
it gradually approaches a fi nal value. That value will
be 50 * e. Press the space bar twice to let a different
error appear. The output will change until, fi nally, it
again becomes 50 * e. With an error of, say, 30 units,
the output quantity will become 1500 units.

You will notice that this output is opposite in
direction to the disturbance, but is far larger than it
would need to be to cancel the disturbance—almost
50 times as large. This excess is called the “loop
gain” of the control system. For good control, loop
gain must be high, meaning 10 or 20 or much more,
depending on how good the control has to be. Some
real control systems have a loop gain of 10 million.
Loop gain is actually the product of Kf, Ki, and Ko,
but here it is determined by Ko because Kf and Ki
are 1.

If you hand-calculated the variables in this loop
naively, you would fi nd that for any loop gain greater
than 1, the calculations would blow up. They don’t
blow up in this model because of the slowing that you
can now clearly see. When the error signal changes,
the output quantity doesn’t suddenly change to the
corresponding new value. It starts changing toward
the value Ko * e, but gets there slowly. Eventually
it does get to the right value (if the disturbance is
steady). But the slowing is all that allows the system
to be stable when the loop is once again closed.

The slowing doesn’t actually slow the system’s
operation. Remember that when the error signal
changes, the output starts to head toward a value that
is as much as 50 times the amount necessary to correct
the error (or much more). That means it reaches the

6 DEMO2: Modeling control

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

required amount very quickly. In fact, as we will see in
the next frames, the output, given the correct slowing
factor, comes to the required value in one comput-
ing cycle. The optimum tradeoff between loop gain
and slowing leaves the system reacting just as fast as
it would have with no feedback present. If you have
heard that negative feedback systems are slower than
open-loop systems “because they have to wait for the
feedback,” you can now go back where you heard that
and tell whoever it was that they were wrong.

A higher level control system

In the next frame, the system comes up with the
loop closed, the output factor set to 50.00, and the
fat arrow pointing to the reference signal. By using
the left/right arrow keys you can change the refer-
ence signal in the range from –100 to +100. This
demonstration is suppose to show how higher level
control systems can be related to lower levels systems
in a hierarchical model of behavior. We won’t get
into such models here, but seeing how this works
may be interesting.

When you’re controlling the cursor, you can eas-
ily decide to keep it somewhere above or below the
target marks. You just “do” it. But how does that
decision end up causing the real cursor to move to a
new position, and how does it then see to it that the
handle position changes to keep disturbances from
moving the cursor away from the new position? A
two-level model explains this.

Suppose that inside you there is one control system
like the one on the screen, that makes a perceived
cursor move to a position specifi ed by the reference
signal. But suppose there is also a higher-level system,
concerned not with absolute cursor position but with
the relationship of cursor position to the target marks.
This new control system would perceive not only the
cursor position, but the target position. In effect there
would be a second input box at the lower level sensing
the target and creating a target position perceptual
signal. A higher system receiving both that target
perception signal and the perceptual signal already
present that represents cursor position (a copy of it)
could now generate a higher-level perceptual signal
using a higher level input computation. This higher-
level signal would represent the difference between
cursor and target positions. The higher level system
could then receive a reference signal saying whether
this difference in positions should be positive or nega-
tive, meaning that the cursor was above or below the
target. If the amount of separation was wrong, the

output function of the higher system would respond
to the error by altering the reference signal for the
lower system that already controls cursor position.

You can now act like the higher-level system. Use
the left and right arrow keys to change the reference
signal for the lower-level system. You will see the
cursor moving exactly as you specify.

But watch the model’s handle as you do this.
The handle continues to move as the disturbance
varies; it is automatically canceling the effect of the
disturbance. You’re not telling the lower-level system
what action to perform. You’re telling it how much
perceptual signal to maintain. The lower-level system
then produces whatever handle position is needed to
do that. The reference signal does not command an
action; it specifi es the amount of a perception that is
to be maintained.

If the disturbance were zero (you can try this by
setting Kd = 0), it would seem that the reference signal
causes the handle to move, thus causing the cursor to
move. The appearance would then be that the refer-
ence signal commands an action, and that the action
in turn moves the cursor. That is the interpretation
of neuromuscular behavior that is normally accepted.
In many instances of motor behavior, the pathways
and connections in the nervous system corresponding
to our block diagram are known to exist; even the
feedback effects are known to exist. But when one
is measuring the relationship between a “command”
signal and the ensuing action, it is not customary to
apply an independent disturbance to the same ac-
tion—that would spoil the data! As a result, the role
of feedback has been missed (except by a handful of
workers) and the actual organization of the behaving
system has been misinterpreted. Only by applying
disturbances to the effects of the action can we get a
true picture of how systems like this work. That is
why disturbances are always included in models of
control systems.

The same arrangement illustrated here can be
extended both upward and downward to include
many more levels. Each muscle in your arm has a
little control system associated with it that main-
tains a specifi ed perception of tension (sensed in the
tendons). The reference signal for tension comes
from control systems that perceive and control joint
angle, and those systems receive reference signals
from higher systems that perceive and control the
visual objects you act upon. Those systems get their
reference signals from higher systems concerned with
the control of motion, events, relationships, and on
upward to cognitive levels that perceive in terms of

 DEMO2: Modeling control 7

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

varying symbols. The principles of control that you
see here can form the basis for a complete model of
behavioral organization, one that is very different
from the model that has always been assumed to be
correct.

The equations of control

From the block diagram we have now completed, we
can read off the individual equations that describe
each component of the system. You can’t really claim
to have a clear understanding of control systems until
you can reproduce these equations, solve them, and
understand what the solutions mean. But they are
very simple equations: all that’s needed is a little
elementary algebra.

After the text frame you will see these equations,
and in the next frame the same equations being
evaluated over and over in real time, about 10 times
per second (you will notice some little fl ickers). The
solutions are being computed by running through
the equations that you see, one at a time around
and around. The slowing factor is always set to the
optimum value, so the fourth equation is essentially
correct, although you can’t make the system of equa-
tions work by hand-calculation unless you substitute
the expression with the slowing in it. Two frames
further on we will show the same system of equations
with the slowing explicit, and then you will see how
it really works. Then, if you have the patience, you
can do the calculations by hand and see exactly what
is happening.

The point for now is to see that this system of
equations is satisfi ed all of the time. You can change
the two independent variables, r and d, and you can
change all the constants. Of the constants, only the
output constant Ko is allowed to go negative, so
you can see the effects. A negative output constant
will result in positive feedback and runaway for any
value of Ko more negative than –0.9999... . There
is already a negative factor built into the comparator,
which subtracts the perceptual signal; making the
output constant also negative leads to a net positive
overall loop gain—positive feedback. You will see that
positive feedback is not nice. To keep the program
from stopping on overfl ow errors, the output quantity
is limited to values of plus and minus 10,000 (which
would put the cursor about 50 feet off the screen).

As you fi rst see the equations, the four variables
on the left are zero. To see something else, set either
the disturbance d or the reference signal r to some
nonzero amount. Each time you enter a new value

(terminating with the Enter, Up-arrow, or Down-ar-
row keys), new values of the variables instantly appear
next to the equations.

There are two basic relationships to notice. First,
when the output constant is large the perceptual
signal is essentially the same as the reference signal.
The larger you make Ko, the more nearly this will
be true. With Ko large, the effect of changing the
disturbance on the perceptual signal is small, and can
be made smaller by increasing Ko. Use variations in
the disturbance to see how good the control is, and
how much effect there is on each of the four variables
down the left side.

The second relationship is best seen with the refer-
ence signal set to zero. With a large value of Ko, you
will see that the output quantity, qo, remains essen-
tially equal and opposite to the disturbance, d. The
larger Ko gets, the more nearly this is true. A control
system changes its output to cancel the effect of the
disturbance. If you set the reference signal to some
non-zero value, you will see that this is still true, but
that the effect is centered upon the amount of output
that is needed to keep the perceptual signal matching
the reference signal when the disturbance is zero. Try
disturbances of 100, 0, and –100 with the reference
signal set to 50, 0, and –50 to see what is happening.
If you want the control to be really tight, set Ko to
5000. To make control begin to look lax, you have
to reduce Ko to 10 or less.

There is an important objective measure of control
behavior that you can illustrate with these equations.
We can’t see the real system’s reference signal from
outside it, but we can deduce its setting. Adjust the
reference signal to some number like 75 or 100. Then
adjust the disturbance until the output quantity qo,
at the bottom left, goes exactly to zero. You will see
that the input quantity is then exactly at the level
that makes the perception p match the reference
signal r. When the output of a control system goes
exactly to zero, the input quantity is at its “reference
level.” That is the level of input quantity at which the
perception just matches the inner reference signal,
leading to zero error and zero output. We thus have
an indirect way of measuring the reference signal, as-
suming that the real system is organized as the model
is. The observable reference level is independent of
the output constant Ko (if Ko is greater than 0), as
you can verify.

The equations we are seeing are actually expres-
sions of the steady-state conditions that will satisfy the
differential equations that are the exact representation
of a linear control system. You can solve the equations

8 DEMO2: Modeling control

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

as a simultaneous set (by successive substitutions) to
get the solutions shown on the screen. Doing this
proves that the input and output quantities are both
dependent variables. The independent variables are
the disturbance (which originates in the environ-
ment) and the reference signal (which originates in
higher-level systems inside the behaving system). You
can verify that environmental disturbances are the
primary cause of outputs or actions, while the inner
reference signal is the primary determinant of what
the system perceives. A control system controls its
own input, while varying its output as necessary to
counteract external disturbances.

Dynamics: the slowing factor

After the introductory text frame, we look at just the
output part of the control system where the slowing
takes place. The equation shows how a new value of
the output quantity is computed on the basis of the er-
ror signal and the old value of the output quantity.

The computation begins as if we are computing
the output as Ko * e (inside the brackets on the right
side). That number represents the value of output
that would occur with no slowing. Then we subtract
the old value of qo, shown as qo(old). That tells us
how big the jump to the new value would be. Next
we divide the size of that jump, Ko*e – qo(old), by the
slowing factor S. The result is the size of the jump that
will actually be used. Finally, the computed jump is
added to the old value of qo, to get the new value.

You can adjust Ko, e, and S. The input variable
is e, so to see the effects on the fi nal value of qo, vary
e. The screen is set up initially with a slowing factor
of 2, meaning that half the calculated distance to the
next qo is actually allowed to occur. By hitting the
Enter key over and over you can cause the calcula-
tion to occur over and over. You will see the output
quantity gradually approach a fi nal value, and that
value will be Ko * e, no matter what e is.

This is “temporal fi ltering.” We aren’t affecting
the steady-state computation, but only the way we
approach the computed value through time. In the
previous frame we just used the equation qo = Ko *
e for the output quantity. In terms of steady-state
conditions that is the correct relationship, and if you
solve the equations as a simultaneous algebraic set,
the solutions will correctly describe the state of the
system after all transient effects have settled down.
But algebra knows nothing of time.

We introduce system properties related to physical
time by using the slowing factor. If we say that one

computing cycle represents, say, 0.1 second of physi-
cal time, we will fi nd that a certain slowing factor is
needed to match the real behavior. If we then say
that the same computing cycle represents only 0.01
second of time, we will fi nd that we need a slowing
factor 10 times as large to get the same result in real
time—we allow changes to be only 1/10 as large as
before. Without the slowing factor, there’s no way
to say what one computing cycle (once around the
equations) means in terms of real elapsed time.

If you set the slowing factor to 1, you will see that
this is equivalent to no slowing. The fi rst computa-
tion following a change of e will give qo = Ko * e. For
positive slowing factors less than 1 and greater than
0.5, the fi nal value of qo will be reached by values that
alternate above and below the fi nal value.

These oscillations are an artifact of digital calcula-
tions, and do not represent oscillations in the system
being modeled. Likewise, for values of S less the 0.5
the values of qo show larger and larger oscillations
that simply run away. These, too, are artifacts of
the computation and mean nothing about the real
system. For real systems you must choose slowing
factors greater than 1, and usually far greater.

Dynamics:
slowing factor in the control equations

We now return to the full set of control-system
equations, but now the fourth equation is the one
we have just been exploring, with the slowing factor
included. You can change all the system constants
and the independent variables r and d as before, but
now you can also change the slowing factor S.

Instead of computing the equations repetitively as
before, the program now updates the four equations
only once, and does this only when the Enter key is
pressed. You can enter numbers and terminate them
with an up or down arrow key without causing a
recomputation; thus you can change several numbers
before recomputing.

On each recomputation, the program starts with
equation 1 and evaluates qi. It then uses that value
of qi in the next equation and evaluates p; it uses that
value of p to compute e, and that value of e to com-
pute qo(next). In effect it is solving the four equations
by successive substitution. On the fi rst step of the
next calculation, it uses the value of qo(new) found
at the end of the previous step. Before the very fi rst
calculation, qo is initialized to 0, because it’s never
been calculated before.

 DEMO2: Modeling control 9

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

These are the equations that were actually being
computed previously when equation 4 said just “qo =
Ko * e.” When the present screen comes up, the slow-
ing factor is set to the optimum value, and you will
see (as you vary r or d) that this results in the whole
system coming to its fi nal state on the fi rst calculation
after the new numbers are entered.

We will now see that there is a second artifact of
computation to watch out for, related to loop gain
and the slowing factor. The optimum slowing factor
is 1 plus the loop gain: 1 + Ko*Ki*Kf. This amount
of slowing makes the computation come to its fi nal
value in one computing cycle. For any value of
slowing factor less than the optimum amount and
greater than half the optimum amount, the system
will appear to oscillate above and below the fi nal
value, converging more and more slowly as the slow-
ing factor approaches half the optimum value. These
oscillations are artifacts of computation; they do not
represent oscillations in the real system. Furthermore,
when the slowing factor becomes half or less of the
optimum amount, the oscillations build up toward
infi nity. That effect, too, is an artifact and should not
be taken as meaningful.

If too large a physical time interval is chosen to be
represented by a single computing cycle, the slowing
factor needed to match the model’s behavior to real
behavior may prove to be less than the optimum
amount, given the output constant also needed. In
that case the model can’t be used. The time-scale
must be made fi ner, the intervals shorter, until the
slowing factor that is called for becomes greater than
the computed optimum. It should be considerably
greater, so that its precise value can be found. The
term “optimum” refers to the calculations, not to the
real system.

You can choose any value of the output constant,
then adjust the slowing factor to see its effects on
the calculations. You won’t see any effect unless you
then change the disturbance or the reference signal
(if the system is already at equilibrium it will just
stay there).

You will see that when you make the slowing
factor much larger than the loop gain, the system
takes many cycles to approach a new fi nal state. In
fact, the larger the slowing factor becomes, the more
nearly the output function behaves like a pure “time
integrator.” A perfect integrator simply sums its inputs
to produce an output. The output equation with
slowing is qo(new) = qo(old) + [Ko*e – qo(old)]/S.
Expanding this equation we have qo(new) = qo(old)
+ (Ko/S)e – qo(old)/S. The new value comes from

the old value plus a constant (Ko/S) times the error,
minus a “leakage” term, qo/S. The bigger S is, the less
this leakage is. When S is large enough, the leakage
becomes so small that it makes no practical difference.
Then the output function acts like an integrator with
an “integration factor” of Ko/S.

The model parameters that fi t real behavior the
best have a very large value of S, so the integration
factor dominates and the leakage term is essentially
zero. Above some size of Ko, the best S is so large
that only Ko/S matters—at least for compensatory
tracking with a free-moving control handle. Thus a
simpler model could be used, in which we just say
that qo(new) = qo(old) + K*e, where K is the integra-
tion factor. In the next two frames you will see that
Ko/S determines how well the model fi ts, with very
little sensitivity to the absolute magnitudes of Ko
and S. The model works just the same when Ko/S
is 200/1500 as it does when it is 1000/7500, and fi ts
real behavior just as well.

By varying Ko, and then trying different magni-
tudes of disturbance, you can make the system come
to its fi nal state with varying amounts of remaining
error. The larger Ko is, the smaller the fi nal error
will be. So a large Ko corresponds to fussiness, and a
small Ko to “who cares?” Ko is a measurement of the
“importance” of an error to the controlling system.

There are two constants in this control system
that can be adjusted to match its behavior with
the behavior of a real person. The slowing factor
S matches the speed of correction, and the output
constant Ko matches the degree of action that is
generated for a given amount of error. Of course
the reference signal, too, must be adjusted so that the
model brings the cursor to the same fi nal position
that the person does.

Matching the model to behavior

We now come to the ultimate test of this model:
using it to match and then to predict a person’s real
tracking behavior. You will have a choice of three
kinds of controlled variable.

The fi rst step is to choose a disturbance, a dif-
fi culty factor, and a controlled variable (bar, tone,
or number), then do a one-minute run. You would
probably do best to choose diffi culty 0 (the easiest)
unless you’re had a lot of practice. Diffi culty 3 makes
the tracking extremely diffi cult even for an expert. As
you go through the run, the values of handle posi-
tion are being stored in a long table (1800 entries).
Later the controlled variable values are recreated by

10 DEMO2: Modeling control

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

reading values from this table and adding them to
corresponding values in the table from which dis-
turbances are taken.

After the run you will see a graphics screen on
which the experimental run is plotted: the heavy trace
is the handle position against time, the mirror-image
of it is the disturbance variations, and the trace that
wobbles along in the middle is the controlled vari-
able. A straight line is drawn to show where screen
center was. The data for the person is plotted in the
upper part of the screen; after a moment the same
kind of plot is shown for a run of the model, in the
lower part of the screen. The model’s fi rst run uses
default parameters. Every sixth data point is dis-
played. You’ve already seen the model running by
itself in earlier frames. During the model’s run we
don’t bother to display the controlled variable itself or
the handle position; the whole model run takes just a
few seconds. Its simulated handle positions are stored
just as the real handle positions were.

In the left center of the screen is a trace that shows
the result of subtracting the model’s handle position
from the real handle position for each data point. For
each point on the display this plot shows how much
difference there is between what the model did during
its run and what the real person did.

Just to the right center, the “RMS” value of this
difference is shown. It is found by adding together
the squares of all the differences, dividing the result
by the number of items, then taking the square root.
This gives the square root of the average squared
difference, known for short as the root-mean-square
value, or RMS. It gives a statistically-useful measure
of the fl uctuations. The fi t of the model to the real
behavior is best when this RMS value is smallest. To
see the RMS value when the model doesn’t behave
at all, set Ko to a small value (like 1) and do a model
run. This shows how much of the variation in handle
position is accounted for by the model.

At the top right of the screen is a fat arrow point-
ing to one of three places where you can adjust the
model’s parameters:

Ko (output constant), S (slowing factor), and r
(reference signal). Use the Up/Down arrow keys to
point to one of these parameters, then the Left/Right
arrow keys to increase or decrease the values. For Ko
and S, the increments and decrements are 2 per cent
of the current value, so the size of the jumps gets big-
ger as the numbers get bigger. This enables you to
cover a wide range of values in a reasonable amount
of time (the arrow keys repeat automatically if you
hold them down).

Below the parameters, near the middle of the
screen, the ratio Ko/S is calculated each time you
change Ko or S. You will fi nd that wherever you set
Ko, if you select a value of S to make the “integration
constant” Ko/S come back to the same value, the
model will behave very nearly as it did before. Only
for values of Ko less than about 10 is there any visible
difference. You may want to experiment with very
small values of Ko, but to match the real run best you
will fi nd that Ko should be around 500 to 1000. In
fact you can set it to 1000, and just adjust S.

The adjustments are made while you watch the
RMS value. You’re trying to make that value as
small as possible, meaning that the model’s handle
behavior differs from the real handle behavior as little
as possible. After you’ve adjusted a parameter up or
down, press the Enter key to cause a new run of the
model. The lower part of the screen will blank for
a few seconds, then the new plots will appear along
with a new RMS value. Make fairly large changes
in the parameters at fi rst, so you can get an idea of
whether the RMS value is increasing or decreasing.
Then use smaller changes to fi nd the spot where you
get a minimum RMS value.

Adjust the reference signal in the same way, look-
ing for a minimum in the RMS value. You may have
to change Ko and S after changing the reference
signal, and vice versa.

As you jockey Ko and S values up and down,
they won’t quite repeat, because the values are being
changed by a fi xed percentage instead of by a fi xed
amount. Going up two percent from a value isn’t the
same change as coming back down two percent from
the new value. Just fi nd the best minimum you can
without spending a lot of time at it.

You can calculate or recalculate the correlation
between the model’s handle positions and the person’s
at any time. Type “c” or “C”. In a couple of seconds
the new correlation will appear in the right center
of the screen (with a beep to tell you it’s done—the
number may not change).

When you have the lowest RMS value you can
get, you will have found the best Ko, S, and r for the
model. Because the model is so insensitive to the
absolute amount of Ko and S, the most meaningful
number is the integration constant Ko/S. As this
number changes even a small amount, the RMS value
will change signifi cantly.

After you’ve got the best values of the parameters,
exit with the End key. You will be asked if you want to
do another run. Answer Y for yes the fi rst time through.

 DEMO2: Modeling control 11

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

Select a disturbance different from the one you just
used, but select the same degree of diffi culty, 0 to 3.

After you have done the run, the person and
model data will be redisplayed. You will see that the
parameters are still set the way you left them. That
means that the model is now predicting the behavior,
because its parameters haven’t been adjusted yet to fi t
the new run. Type “c” to calculate the correlation of
model and person handle. You will see that it is quite
high. The disturbance pattern is completely differ-
ent, yet the model reproduces the handle movements
essentially as well as it did before.

If you now write down Ko/S and r, then adjust
the parameters for the best fi t, you can see how much
the best-fi t parameters change from one disturbance
to another. The change will be very small. These
measures are very stable over repeated runs.

You might also want to try using different degrees
of diffi culty. You will see that Ko/S is sensitive to de-
gree of diffi culty (meaning that a different best value
will be found). In terms of the model, these differ-
ences suggest that the comparator is nonlinear—its
response to large errors falls below the response of a
perfectly linear device. This means that the loop gain
declines when the error is large, as it is (more often)
when the diffi culty increases. We can’t measure the
linearity of the comparator independently, so the
result we see looks like a change in the output fac-
tor (that is, can be imitated by changing the output
factor).

You should be getting the hang of the method of
modeling by now. The basic procedure is to propose
a working model, then run it repeatedly to fi nd the
values of its parameters that make it fi t real behavior
as well as possible. Those parameters then amount
to measures of the parameters of the real system, as-
suming, of course, that the real system is organized
the way the model is.

Improving the model

The last demonstration is just like the previous one,
but a small change has been made in the model. Now
we are assuming that the input function contains a
slowing factor, too.

The old input function was just a multiplier of 1:
the perceptual signal, p, was just 1 times the controlled
variable; when that variable is cursor position, c, p = c.
Now we assume that same steady-state proportional-
ity, but introduce a slowing factor that puts a lag into
the perceptual process as well as the output process.
We know that visual perception does involve some

time-lags, so this proposition is not unreasonable.
The new adjustable factor is called the “sensory slow-
ing factor” on the graphics screen of this step. The
effect of this change will be to slow the feedback a
little, which will tend to make the system overshoot
somewhat. The result is a small but quite reliable
improvement in the fi t of the model (for a person who
has had enough practice to control skillfully).

This step begins as the previous one did, with
an experimental run. If you have already done an
experimental run, however, you don’t have to do a
new one—the data are still stored. You will be asked
if you want to do a new run. You can answer the
question with ‘N’ for no, and proceed right to the
graphics screen.

Now there is one added parameter that can be
changed, a sensory slowing factor. It is initially set to
1, which means no sensory slowing. You should see
the same results you found in the previous demon-
stration, if you did one. If you have done a new run,
adjust Ko, S, and r as before for the smallest value of
RMS, leaving the sensory slowing factor at 1.

The slowing factor works like the output factor; it’s
a divisor. As it gets bigger there is more slowing. The
actual formula for the perceptual signal p is now

p(new) = p(old) + [Ki * c – p(old)]/Ss, where Ss
means sensory slowing factor.

If the controlled variable were to jump from zero
to 1 unit, and if the slowing factor Ss were 2, the
perceptual signal would become 0.5, 0.75, 0.875,
0.9375 ... and so on. These jumps would occur
once per computing cycle. The computing cycles
are, in this step and the previous one, synchronized
with half the vertical scan rate of the display screen:
1/25 second for a Hercules monochrome graphics
screen, 1/30 second for CGA, and 1/35 second for
VGA graphics . This gives a physical meaning to the
slowing factor.

The slowing factor is adjustable in steps of 0.5.
You will fi nd that a value between 3 and 8 will give
you a new minimum in the RMS value. But as you
adjust the sensory slowing factor, you will fi nd that
you have to fi nd a new best value for the integration
factor Ko/S, which you can reach just by adjusting
S. The best strategy is fi rst to fi nd a new minimum
using the sensory slowing factor, then improve that
minimum by adjusting the output slowing factor S,
then readjust the sensory slowing factor and fi nally
make a last adjustment of S. The best setting of the
reference signal may also change. You will probably
fi nd that the correlation between model and person
handle is now slightly higher, and the RMS value is

12 DEMO2: Modeling control

© 1990 William T. Powers File demo2_doc.pdf from www.livingcontrolsystems.com March 2004

perhaps 5 to 10 percent lower than it was without
sensory slowing. The correlation is a poor indicator
when it is so high—RMS is more sensitive.

For a well-practiced participant, there is always at
least some improvement when the sensory slowing
factor is adjusted away from 1, so this appears to be
a valid addition to the model.

Before you leave this series, try doing a run with a
non-zero value of your personal reference signal—that
is, keep the cursor or other controlled variable some
fi xed distance away from the target value. You can
measure your own reference signal by adjusting r
in the model to get a minimum of the RMS value.
Then you can adjust the other parameters in the same
way. They should be nearly the same as when you are
keeping the controlled variable at the suggested value.
You may be surprised at how constant the reference
signal remains during the course of a run—a drift
will show up in the central “difference” plot as long-
term changes in the difference. The reason is that
the model defi nitely maintains a constant reference
signal; if you don’t, there will be a change in addition
to the short-term changes that we normally see. You
will probably do better than you would guess just
from the way it feels.

Conclusions

I hope you’ve found this Introduction to Control
Theory instructive. I hope it suggests a whole new
way of proposing and testing ideas about how be-
havior works.

I hope, too, that you have been surprised at how
well this model reproduces the simple behavior we’ve
been exploring. Common wisdom says that the
behavior of organisms is highly variable, so much
so that we must do many experiments with many
subjects just to get a hint of some regularity. These
experiments should have made you skeptical of any
such opinion. It’s true that the handle movements
in these experiments are extremely irregular; if all you
could see or hear were the controlled variable and the
handle movements, you might conclude that they
are both random. But we know there is a hidden
disturbance and we know exactly how it affects the
variable that the person is controlling. Given that
knowledge, and a model that actually fi ts, we fi nd
that the handle movements are almost perfectly pre-
dictable for every 1/30 second during a one-minute
run. The “variability” is only about 5 percent of the
range of movement.

Furthermore, when the model is improved we fi nd
that the variability gets a little less. Surely we could
fi nd still more improvements, and remove still more
of the unpredictable component. An ultimate limit
will be set by the natural noise level of the behaving
system—but we now know that this natural vari-
ability is far smaller than is normally assumed, an
order of magnitude smaller. Behavior looks highly
variable only when you see it through the eyes of the
wrong model.

I suggest that you learn how to construct models
and run them on a computer as we have been doing
here. Then you won’t have to wait on the sidelines
while someone else fi nds the answers to the many
questions about the uses of control theory in the
behavioral sciences. Why don’t you pitch in to help
answer them?

Good Luck.
William T. Powers

