
© 2003 William T. Powers File square_circle.pdf from www.livingcontrolsystems.com March 2004

This program is a demonstration of a basic fact
about people organized as negative feedback control
systems: they vary their actions as required to control
the perceptual effects of those actions. Here, a person
moves a mouse to make a spot trace out a square on
the computer screen (the controlled perception), but
the movement required is to move the mouse either
in a triangular pattern or a circular pattern—not a
square pattern.

Operating the demo

Start the program. You will see a screen showing a
large square with a small circle in it, and a dot over
on the right. If the small circle starts to move, hit the
space bar to reset it.

Across the top of the screen you will see

CIRCLE PERSON CONTROLLING TRACE ON

Below that are the instructions for giving commands
(upper or lower case):

c,t: select circle or triangle
m,p: Model or Person traces square

and in the next row down,
n: toggle random noise on and off
 (when model is controlling spot)
s: toggle trace on and off (leave record of
 track on left or just show small circle)

The next commands are not described on the screen:

space: reset without changing settings
q: quit

Squaring the circle

Let’s postpone the discussion. You can now start
moving the spot (the small circle) around the square
by using the mouse. Move it very slowly – this is
not easy. Be as accurate as you can. When you have
traced completely around the square, look at the
record of the mouse movements on the right side of
the screen. It will be a circle! To try it again, just hit
the space bar to reset.

Now press the “t” (or ‘T’) to select the triangle.
Repeat the trace around the square. This is even
harder, but when you’re done, look at the mouse trace
on the right. The mouse moved in a triangle this time.
(Typing ‘c’ or ‘C’ restores the circle pattern)

To convince yourself that the mouse trace is really
showing how you moved the mouse, type ‘l’ or ‘L’ to
turn off the left side of the screen (you can also leave
the left side showing if you like, or do this any time
during a run). Move the mouse in any arbitrary pat-
tern, and you’ll see the mouse dot moving exactly the
same way. The trace on the right always shows exactly
how the mouse moved. Press the same key again to
turn the left side back on, if you turned it off.

You can also draw other shapes on the left side, as
long as they stay away from the center of the square
(the program gets confused if you move the spot too
close to the center). For example, with the fi gure set
to “triangle,” you can draw a diamond by connecting
the midpoints of the square with straight lines. You
can even draw an upside-down triangle. In either
case the mouse record will still show a right-side-up
triangle! This works best if you move the spot slowly
and have a clear idea of the fi gure you’re going to
draw with the spot.

This demonstration illustrates what is meant by saying that behavior is the control of perception (meaning,
behavior is the visible part of the process by which we control our perceptions). A mouse is used to draw a
square on the screen. But between the mouse and the screen there is a transformation which requires that the
mouse move in a circle or a triangle—no matter what fi gure is being drawn!

2 Squaring the circle

© 2003 William T. Powers File square_circle.pdf from www.livingcontrolsystems.com March 2004

Paradox??

Some people think that controlling is a process of
fi guring out the actions needed to produce a wanted
result, and then executing the actions. In the present
case, that would mean fi guring out how to move the
mouse to create a square pattern on the left side of
the screen. It would be very hard to fi gure out what
actions are needed in this demonstration. Even if
you look at the circle or triangle pattern of the mouse
movements after one run and then reproduce the
movements as best you can remember, you would not
get a square (or diamond or upside-down triangle)
on the left as a result. Don’t bother trying this: the
next paragraph should settle the question.

Even if you could see the exact shape of the
required fi gure, tracing it would not reproduce the
fi gure on the left. You can try this by typing ‘f ’ to
show the required fi gure, and then moving the mouse
trace around its edge as accurately as you can. You
will most defi nitely not get any particular shape on the
left. Yet you can leave the fi gure on the right part of
the screen and make the spot move around the square,
and you’ll see that your hand made the mouse-trace
move around exactly the same fi gure.

We appear to have a paradox. Whatever you draw
on the left side, you will see the intended pattern on
the left and either a circle or a triangle on the right,
showing how the mouse moved. But if you try to
move the mouse as exactly as you can in the same way
as that pattern on the right, even with an accurate
picture of that fi gure as a guide, you will not get the
fi gure you just drew on the left.

Explanations

This strange behavior is achieved by the action of an
invisible control system inside the computer that tries
to keep the mouse on the edge of a stored hidden pat-
tern, the triangle or circle. This control system senses
where a line from the center of the hidden pattern
through the mouse crosses the boundary of the fi gure.
If the mouse is inside the boundary on this line, the
control system pushes on the spot being controlled by
the person. It pushes, in this case, toward the center of
the square that the person is tracing, so if the person
did not resist, the spot would move inside the square.

As this deviation begins to develop, the person detects
it and moves the mouse to correct the error. The
movement of the mouse required to correct the error
moves the mouse radially outward from the center of
the hidden triangle or circle. Since the mouse was
initially inside the boundary of the hidden pattern,
it therefore moves toward the boundary.

The same thing, only in reverse, happens if the
mouse is outside the boundary of the hidden fi gure.
The hidden control system pushes radially outward
on the spot that the person is controlling, and to
correct the error the person moves the mouse radially
inward toward the edge of the hidden pattern.

In this way, the invisible control system uses dis-
turbances of the spot that the person is controlling
to make the mouse move radially inward or outward,
thus keeping it close to the edge of the hidden pattern.
Movements around the center of the hidden pattern
are not resisted – only radial movements that would
take the mouse off the edge of the hidden pattern
are controlled.

The hidden control system uses “proportional-
integral control”, which means that in addition to
the action being proportional to the error, the action
continues to increase as long as there is any error at
all. This action consists of pushing on the spot that
the person is controlling, so if you displace the mouse
a little and then let go, you will see the spot move
quickly at fi rst, and then keep moving slowing as long
as no corrective motion of the mouse is made. The
only way to stop the motion of the spot is to put the
mouse dot exactly on the perimeter of the fi gure on
the right (turn the fi gure on with ‘f ’ to check this).

This is why you can’t reproduce the mouse pattern
exactly enough to recreate the shape on the left. The
slightest error will make the spot move indefi nitely far
unless an error of the opposite sign is created. And
the current position of the spot on the left depends
on the cumulative history of mouse position errors,
so you would have to recreate not only the current
position error, but the whole history of position errors,
including those you caused yourself by slight wobbles
of your hand. You would be trying to reproduce
exactly those same wobbles using the same wobbly
hand, so it’s hopeless. Can you make all the same
tiny mistakes during two runs in a row?

 Squaring the circle 3

© 2003 William T. Powers File square_circle.pdf from www.livingcontrolsystems.com March 2004

A model of the person

If you type ‘m’ or ‘M’, the program will stop reading
mouse positions from the mouse, and start reading
simulated modeled mouse positions from an internal
simulation of the person’s control system (a fi rst ap-
proximation – a much better model could be con-
structed). As soon as control is given to the model,
the spot begins to trace around the square just as if a
person were doing it. There are natural wobbles due
to rounding errors and dynamic interactions between
the model and the hidden control system; more ran-
dom noise can be toggled on and off by typing ‘n’ or
‘N’. The model simply substitutes for the person,
with no change in the rest of the program..

This model shows some of the same problems
that a real person has, because it is designed to be
slightly unstable yet have high sensitivity to error.
In order to match the model’s errors more closely
to the human errors, it would be necessary to adjust
the model’s parameters for the best fi t to the human
performance.

Also, if a real person tried many runs the perfor-
mance would improve from run to run. The current
model has no ability to improve its performance,
but it could be given this ability quite easily. If we
adjusted the model parameters to fi t each of a series
of runs by the same person, we would see some of
the best-fi t model parameters changing from one
run to the next. We could then imitate the learning
performance by simply having the model change its
parameters from one run to the next, or we could
try to simulate the learning process itself, making
the parameters depend on comparisons of achieved
performance with desired performance. Anyone is
welcome to use this program as the basis for a research
project of this kind (or any other).

Addendum

When ‘m’ is pressed, “NOISE” or “NO NOISE” is
added to the top line on the screen, and noise can be
turned on and off. The run is reset by toggling the
noise on or off. This noise is a small random number
added to the simulated mouse position.

