
	 �

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

BYTE 2: July 1979

The Nature of Robots
Part 2: Simulated control SyStem

In part 2 of The Nature of Robots, William
T Powers presents a BASIC simulation of a
control system. By experimenting with this
simulator, the reader is able to work with the
concepts of a closed loop control system.
. Page 134

This article appeared in BYTE magazine, volume 4, number 7, JULY 1979.
Copyright returned to author. Article recreated by Dag Forssell in 2004.

�	

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

The Nature of Robots
Part 2: Simulated control SyStem

n part 1, we went through a chain of reasoning
that ended with the conclusion that the behavior
of an organism is not what it seems. Behavior

appears to be at the end of a cause and effect chain that
starts with the inputs to a nervous system, but that
chain is subject to disturbances that can occur after	
the output of the nervous system. Nevertheless, the
behavior at the end of this chain is stable and repeat-
able, while events closer to the organism become less
predictable as we get nearer to the neural signals at
the output of the nervous system. By analyzing an
example in which a car is maintained in the center of
its lane, we saw that this measure of behavior belongs
at both the cause and effect ends of the chain, and that
if this variable is shown only once in the diagram, a
closed loop results.

We are going to look in more detail at the behav-
ing system in this closed loop, to see how it might be
organized to produce the results seen. We will start
using a simulator written in BASIC which allows the
user to vary many parameters of the control system
to see the effects on its actions. Human behavior will
not be mentioned much in this installment; there are
many fundamentals to cover before we can get back
to the main purpose of this series. The object here is
to retrain the intuition so that the closed loop way of
seeing behavior becomes as natural as the old straight
through cause and effect way.

I note on north Star BaSic

The method of accessing strings in North Star
BASIC is different from that of Microsoft and
other BASICs. Translate as follows:

A$(1,n) becomes LEFT$(A$,n)
A$(n) becomes RIGHT$(A$,n)
A$(m,n) becomes MID$(A$,m,n)

Figure,	table,	and	listing	numbering		
continued	from	part	�.

organization of a control System

The simulator (listing 2) is set up to demonstrate the
properties of a standard sort of control system organi-
zation. We will first look at that organization, then at
the simulator itself, and finally at some details of the
operation of the control system. You can do much
more experimenting than we will discuss here.

	 BYTE	�:		July	�979.		The	Nature	of	Robots;	Simulated	Control	System	 �

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

Listing 2: A	control	system	simulator		
		written	in	North	Star	BASIC.

1 PRINT "PROGRAM TWO: SIMULATION OF CONTROL SYSTEM
BEHAVIOR"

2 PRINT
3 PRINT "AFTER PROMPT (COLON), YOU MAY TYPE"
4 PRINT "’PLOT XXXXXX’, WHERE XXXXXX MEANS"
5 PRINT "ANY ONE OR MORE CHARACTERS FROM THE"
6 PRINT "SET P,E,R,I,O,D, IN ANY SEQUENCE."
7 PRINT
8 PRINT "YOU MAY ALSO SET PARAMETERS BY TYPING IN"
9 PRINT "THE PARAMETER SYMBOL IMMEDIATELY FOLLOWED"
10 PRINT "BY AN EQUAL SIGN AND THE VALUE (NO SPACES)."
11 PRINT
12 PRINT "PARAMETERS ARE L, K1, K2, S1, S2, O, P, R, AND D"
13 PRINT "DEFAULT VALUES 16, 1, 2, 1, 1, 0, 0, 0, AND 15"
14 PRINT
15 PRINT "TO RUN, TYPE ‘.’ (INITIALIZE), OR ‘/’ (DON’T INIT)."
16 PRINT
17 K1 = 1
18 K2 = 2
19 S1 = 1
20 S2 = 1
21 P0 = 0
22 O0 = 0
23 R0 = 0
24 D0 = 15
25 V(4) = 1
26 V(5) = 1
27 V(6) = 1
28 INPUT "DISPLAY WIDTH: ",W
29 W = W – 2
30 C = W/2 \ REM CENTER OF DISPLAY
31 DIM Z$(W),M$(W),A$120),B$(6),K(6),U(6),E$(72)
32 B$ = "PERIOD"
33 L1 = 15
34 FOR J = 1 TO W
35 Z$(J,J) = " "
36 NEXT J \ REM CREATE BLANK FILE
37 DEF FNI(X)\ REM INPUT FUNCTION
38 P = P + S1*(K1*X–P)
39 RETURN P
40 FNEND
41 DEF FNO(X) \ REM OUTPUT FUNCTION
42 O = O + S2*(K2*E–O)
43 RETURN 0
44 FNEND
45 DEF FNF(X) = 0.5*X \ REM FEEDBACK FUNCTION
46 DEF FND(X) = 0.8*X \ REM DISTURBANCE FUNCTION
47 REM * *
48 REM * * COMMANDS FOR SETTING PARAMETERS
49 GOTO 51
50 A$ = " " \ IF El > LEN(E$) THEN 51 ELSE 53
51 INPUT ":",E$ \A$ = " "\E1 = 1
52 IF LEN(E$)< > 0 THEN 53 \ PRINT \ GOTO 51
53 E1 $ = E$(E1,E1) \ E1 = E1 + 1
54 IF El $ = "," THEN 57 ELSE IF El >LEN(E$) THEN 56
55 A$ = A$ + E1 $ \ GOTO 53
56 A$ = A$ + E1 $
57 IF A$ = "." THEN 95
58 IF A$ = "/" THEN 99
59 IF A$ < >"?" THEN 62
60 PRINT \ PRINT%7F3,"K1 = ",K1," K2 = ",K2," S1 = ",S1," S2 = ", S2
61 GOTO 51
62 IF LEN(A$)< 5 THEN 72
63 IF A$(1,5)< >"PLOT" THEN 72

64 A$ = A$(6)
65 FOR J = 1 TO 6 \ REM TAG VARIABLES TO
66 V(J) = 0 \ REM BE PLOTTED.
67 FOR K = 1 TO LEN(A$)
68 IF A$(K,K) = B$(J,J) THEN V(J) = 1
69 NEXT K
70 NEXT J
71 GOTO 50
72 IF LEN(A$)< 3 THEN 91
73 IF A$(1,3)< >"K1 = " THEN 75
74 K1 = VAL(A$(4)) \ GOTO 50
75 IF A$(1,3)< >"K2 = " THEN 77
76 K2 = VAL(A$(4)) \ GOTO 50
77 IF A$(1,3)< >"S1 = " THEN 79
78 S1 = VAL(A$(4)) \ GOTO 50
79 IF A$(1,3)< >"S2 = " THEN 81
80 S2 = VAL(A$(4)) \ GOTO 50
81 IF A$(1,2)< >"0 = " THEN 83
82 O0 = VAL(A$(3)) \ GOTO 50
83 IF A$(1,2)< >"P = " THEN 85
84 P0 = VAL(A$(3))\ GOTO 50
85 IF A$(1,2)< >"R = " THEN 87
86 R0 = VAL(A$(3))\ GOTO 50
87 IF A$(1,2)< >"D = " THEN 89
88 D0 = VAL(A$(3))\ GOTO 50
89 IF A$(1,2)< >"L = " THEN 91
90 L1 = VAL(A$(3))\ GOTO 50
91 PRINT "???", \ GOTO 50
92 REM **
93 REM ** SIMULATION AND PLOTTING LOOP
94 REM **
95 P = P0 \ REM ENTRY WITH INITIALIZATION
96 O = 00\D = D0\R = R0
97 I = FNF(O) + FND(D)
98 E = R – P \ GOSUB 109 \ REM PLOT INIT. CONDITIONS
99 D = D0 \ REM ENTRY, NO INITIALIZATION
100 R = R0
101 FOR L = 1 TO L1 \ REM CONTROL LOOP SIMULATION
102 I = FNF(O) + FND(D)
103 P = FNI(I)
104 E = R–P
105 O = FNO(E)
106 GOSUB 109 \ REM CALL PLOTTING SUBROUTINE
107 NEXT L
108 GOTO 50
109 REM * "
110 REM ** PLOTTING SUBROUTINE
111 REM
112 U(1) = P + C
113 U(2) = E + C
114 U(3) = R + C
115 U(4) = I + C
116 U(5) = 0 + C
117 U(6) = D + C
118 PRINT
119 M$ = Z$ \ REM CLEAR OUTPUT BUFFER
120 M $(C + I ,C + 1) = "." \ REM MARK SCREEN CENTER
121 FOR J = 1 TO 6 \ REM LOAD BUFFER
122 U = INT(U(J) + .5) + 1
123 IF U< 1 THEN U = 1
124 IF U> W THEN U = W
125 IF V(J) = 1 THEN M$(U,U) = B$(J,J)
126 NEXT J
127 PRINT M$, \ REM PRINT BUFFER
128 RETURN
999 END

�	

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

Figure 5 is a diagram of a typical control system.
Almost every control system can be expressed in
this form, although in the real system, functions
that are shown here as separate are often combined
into one physical entity. The symbols for functions
and variables are those which appear in the BASIC
simulator.

The behaving system is entirely above the bound-
ary line. All that is not the behaving system (or
systems inside the organism at a higher level, not
considered here) is called the environment	of the sys-
tem. Variables inside the system will always be called
signals,	and variables in the environment will always
be called quantities.

In the environment we have three quantities
mentioned in part 1. The input	quantity is a physi-
cal variable that the system can sense. The state of
this quantity is the result of all influences acting on
it (which in our limited universe means the influence
from the system’s own output) and one representative
disturbing	quantity	that can vary independently from
what the system does. The system’s output is repre-
sented by the output	quantity.		The input quantity is
called I, the output quantity O, and the disturbing
quantity D.

The output and disturbing quantities are sepa-
rated in space from the input quantity, and they
influence the input quantity through properties of
the intervening environment. The connection that
translates the state of the output quantity into an
influence on the input quantity is called the feedback	
function,	symbolized in BASIC as FNF. The function
that translates the state of the disturbing quantity
into another influence on the input quantity is the
disturbing	function,	symbolized FND. If the input
quantity is associated with some physical object, then
FNF and FND may both contain properties of that
object (eg: its mass). There are less redundant ways
to handle this in special cases.

The meaning of the previous paragraph is summed
up in line 102:1 = FNF(O) + FND(D). The state of
the input quantity is the sum of the influences from
the output quantity and the disturbing quantity. In
the real world, both the output quantity and the dis-
turbing quantity may have many effects other than
those on I, but those effects are irrelevant to the op-
eration of this system (perhaps not to the designer or
user of the system, if it is artificial). We have therefore
considered everything about the environment that is
of interest here.

Figure 5: The	system’s	output	quantity,	0,	influences	
the	 input	quantity,	 I,	 via	 the	 feedback	 function,	
FNF.		The	disturbing	quantity,	D,	influences	the	
input	quantity	via	the	disturbance	function	FND.		
Both	FNF	and	FND	represent	physical	links	in	the	
environment.	 	The	 state	 of	 the	 input	quantity	 is	
determined	by	the	sum	of	these	two	influences.
	 The	system’s	input	function,	FNI,	converts	the	
state	of	the	input	quantity	into	a	magnitude	of	the	
perceptual	signal	P.		P	is	compared	with	the	refer-
ence	 signal	R	 in	 the	 comparator	 function,	which	
emits	an	error	signal	E	=	R	–	P.		The	error	signal	is	
converted	into	a	magnitude	of	the	output	quantity	
via	the	output	function,	FNO.

Above the line we have the behaving system. We
cross the boundary at the input	function,	FNI. This
is the function which turns the state of an external
quantity, I, into the magnitude of a perceptual	signal,	
P. Both sensors and computing processes may be
involved in a complex input function. The outcome,
however, is always the magnitude of a single signal,
whatever it represents. This signal can only increase or

	 BYTE	�:		July	�979.		The	Nature	of	Robots;	Simulated	Control	System	 �

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

anatomy of the Simulator

Let’s run through the simulator quickly before we
start using it, to see how this control organization
operates.

Lines 1 thru 16 are user instructions. Lines
17 thru 27 initialize the system in a way that will
be used to illustrate a point. Lines 28 thru 33 do
more initializing, and ask for the width of your
display. Lines 34 thru 36 create a blank string in
case your BASIC doesn’t set dimensioned strings
initially to spaces.

Lines 37 thru 46 define the various functions of
the control system. If your BASIC can’t do multi-
line functions, you can substitute subroutines here.
The idea is to make it easy to try out different kinds
of functions in the control system.

Lines 49 thru 91 comprise the interpreter,
which accepts character strings and sets initial
conditions and parameters before each run. Vari-
ables are initialized and constants are set by typing
a string of the form A=m or An=m (no spaces;
terminated by a carriage return). To set up the
plotter, the statement is PLOT XXXXXX, where
XXXXXX is one or more characters from the set
P,E,R,I,O, and D, in any sequence. The plotter
comes up set to plot P, E, and R. If you forget
the last values of the parameters K1, K2, S1, and
S2, type ? and they will be printed out. We will
eventually define them,

The control system itself is simulated from line
95 to line 108. Entering the simulator at line 95
initializes the perceptual and output variables to
values given to the interpreter. Entering at line 99
runs the simulation from the conditions left at the
end of the last run. This is taken care of by the two
run commands in the interpreter: a dot (.) means
run with initialization, and a slash (/) means run
without initialization. All commands require a
carriage return termination.

The plotting subroutine goes from line 112 to
line 128. Its operation deserves a note, since it was
arrived at after some more normal schemes were
rejected for being too slow. When the interpreter
is given a string of symbols to set up the plotting,
a table is set up (V(j)) in which a 1 means plot and
a 0 means don’t plot. When the plotter is entered,
it transfers all six variables to another table, U(j).

The output buffer is then cleared, and a short
loop scans the V table, picking up variables from
the U table when V(j)=1, and putting the symbol
into the output buffer in a position correspond-
ing to the value of the variable. Then the output
buffer is printed out. This eliminates sorting the
variables by size or printing the line as many times
as there are variables. This method nicely cures
the fundamental “rheumatism” of BASIC, as it
is able to plot about two lines per second on my
Polymorphics VTI display.

When two variables fall on the same spot, the
variable that actually appears is the latest one in the
series PERIOD. Thus far it has always been easy to
figure out where a missing variable is hidden.

Once we have a set of variables connecting
functions together, and an overall arrangement,
we can treat the system by assembling it piece by
piece. Let’s look at the pieces we have, represented
by the four statements in listing 2 from line 102
to 105:

102 I = FNF(O) + FND(D)
103 P = FNI(I)
104 E = R – P
105 O = FNO(E)
Looking at figure 5, we can see that these four state-
ments lead us clockwise around the closed loop. I is
the result of combining the outputs of the feedback
and disturbance functions. it becomes the input
to the input function, producing a value of the
perceptual signal P. P is one of the inputs to the
comparator, which produces the error signal E.

E is the input to the output function that pro-
duces O, the output quantity. The output quantity
is the input to the feedback function, which leads
us back to the start.

It might seem that all we have to do now is to
supply some specific forms for the functions, and
turn the system on to see what it will do. In a sense,
this is right. If this were an analogue computation,
we might even get a correct idea of how the system
works. However, it is unlikely that anyone who
hasn’t done this before would plug in the right func-
tions to make a digital computer give us anything
more than a fairy tale. It is so important to under-
stand this point that l have written the simulator to
come up initialized in order to illustrate it.

�	

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

using the Simulator

The simulator is run from the keyboard, using commands that tell it which variables
to plot and what values of variables and parameters to start with. The instructions
can be given one at a time, terminated by carriage returns, or they can be given in a
continuous string with commands separated by commas. The latter is useful for alter-
ing parameters in the middle of a plot in order to see their effects.

The only time a space is permitted in a command or string of commands is when
it is separating the word PLOT from the string of variable symbols to be plotted.

In order to tell the simulator what variables to plot, type:

PLOT XXXXXX
where XXXXXX means a string of 1 to 6 symbols from the set PERIOD. The order
of the symbols makes no difference. When two or more symbols land on the same
plot, the one that you see is the latest in the series PERIOD, regardless of the order in
which they were given.

To start a plotting run, type a period followed by a carriage return or comma if
initialization is to occur first, and type a slash (/) if the run is to start from the condi-
tions at the end of the previous run. Initializing creates one extra line of plot showing
the initial conditions.

The parameters and variables that can be set are as follows:

L Number of lines to be plotted in any plotting run.
K1 Steady state proportionality factor of the input function.
S1 Slowing factor for the input function; positive and between 0 and 1.
K2 Steady state proportionality factor of the output function.
S2 Slowing factor for the output function; positive and between 0 and 1.
O Initial value of output quantity.
P Initial value of perceptual signal.
R Setting of reference signal.
D Magnitude of disturbing quantity.

Examples: (colon is prompt from computer. Always terminate a string with a
 carriage return).

Set L to 16 :L=16
Set D to 0, run without initializing :D=O,/ or
 :D=O
 :/

Set D to 0, plot 2 points
after initializing, set D to :PLOT PER,D=0,L=2,.,D=10, L=13,/
10, plot 13 points from
previous conditions. Plot P, E, and R

The program is written so that after a plot is completely done (a complete string has
been interpreted), the prompt character appears to the right without a carriage return.
That allows a 16 point plot to be shown on a 16 line video display screen without the
final carriage return bumping the first line off the screen. If you want your next string
to start at the left, just hit a carriage return.

To find out the values of K1, K2, S1, and S2 when you forget them, type “?” fol-
lowed by carriage return and they will be printed.

	 BYTE	�:		July	�979.		The	Nature	of	Robots;	Simulated	Control	System	 7

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

decrease; we will always work with one-dimensional
control systems, treating multi-dimensional control
phenomena by using multiple control systems. The
perceptual signal is the system’s internal representation
of the external world—its only such representation.

Line 103 expresses the definition of the input
function and the way it relates the input quantity
and perceptual signal: P = FNI(I).

Inside the system is another signal, the reference	
signal,	R. In living systems, this signal is generated
elsewhere in the organism; it is not accessible from
outside. The reference signal, along with the percep-
tual signal, enters a function called the comparator,	
which subtracts one signal from the other and emits
an error	signal,	E, representing the signed difference
of magnitudes. It does not matter which signal is
subtracted from which, but for uniformity we will
always treat the reference signal as the positive input
and the perceptual signal as the one subtracted from
it. Thus, a positive error signal always means that the
reference signal is larger than the perceptual signal.
This function does not have to be generalized, as non-
linearities and amplification can always be absorbed
into one of the other functions.

Therefore line 104 represents the comparator
without using a function; it is the comparator
function itself: E = R – P.

The error signal drives the output of the sys-
tem via the output	function,	FNO. The output
of the system, therefore, depends not on the
input quantity or the perceptual signal alone,
but on the difference between the perceptual
signal and the reference signal. The output
function translates a signal inside the system
into a quantity outside it, according to whatever
rule is described by FNO. If the error signal
changes sign, the output quantity also changes;
in other words, we assume that output functions
have no constant term. Any such constant term
would have the same effect as a reference signal,
creating an offset in the overall system response.
Not every system can handle error signals and
output quantities that go through zero and thus
change sign, but the principles remain the same
in the region where the system works.

Line 105 expresses the operation of the
output function: O = FNO(E). This closes
the loop of cause and effect since the output
quantity appears in line 102 where the input
to the system is calculated.

If the system functions are properly designed for
the properties of the system’s environment, this en-
tire closed loop will seek an equilibrium state. Our
simulator will let us look at time-varying effects, but
for the most part we will be concerned with steady
state relationships.

Once we have seen how time variations come into
the picture, we will concentrate on variations that
occur slowly enough that the system and its environ-
ment never get far from a steady state relationship.
This is the whole trick in grasping how control sys-
tems work. If you allow yourself to become embroiled
in the interesting details of stabilization, or interested
in the limits of performance in the presence of large
and rapidly changing disturbances, you may learn a
lot about one control system, but you will miss the
organizational features that are obvious only when
the system is not being subjected to unusual stresses.
We will be concerned mainly with the normal	range	
of	 operation,	 the range within which this system
can behave very nearly like an ideal control system.
Once that mode of operation is understood, there is
plenty of time to explore the limits of operation. (See
“Anatomy of the Simulator” text box).

Figure 6: The	initial	plot	generated	by	the	BASIC	simula-
tor.		Disturbance	is	set	to	��	units	and	the	reference	signal	is	
initialized	to	O.		The	system	is	in	a	state	of	oscillation.

�	

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

a Wrong approach

Let us start off by assuming that we have a simple
linear system. The input function is a multiplier of
1, the comparator is already simple and linear, the
output function is a multiplier of 2, the feedback
function is a multiplier of 0.5, and the disturbance
function is a multiplier of 0.8. These choices are dic-
tated partly by the need to keep variables from falling
on each other when we plot them. The simulator
initializes D to 15.

Our four system equations, with these values
substituted, now look like this:

I = 0.5xO + .8xD=0.5xO + 12 (1)
P = I (2)
E = R–P (3)
O = 2xE (4)

This system of equations is iterated during a simula-
tion of behavior.

The above is a pretty simple system of equations.
So why can’t we just solve it algebraically and skip
the rest? I suggest, in fact, that you do solve it (by
successive substitutions). Solve for the value of the
perceptual signal in terms of R and D. You’ll get
P=I=(R – 0.8 x D)/2.

Ready for a shock? Your computer can’t come up
with that solution! Let’s fire up the BASIC simulator,
which is initialized according to equations 1 thru 4
above, and plot I, D, and O. Type RUN, and answer
the question with a reply that tells the width of your
display. After the colon prompt appears, type in the
following:

: .
I trust nobody had trouble with that.

The dot says “do a plotting run after initializing
the variables.” A slash (/) would say “do the run from
where the last run left off.” The result can be found
in figure 6.

The disturbance is set to a steady + 15 units, and
the reference signal is initialized to 0. According to
the algebraic solution above, the input signal should
be a steady 0.8 x 15/2, or 6 units, to the right of center
(dots indicate center when nothing is there). It is clear
that something else happened. The whole system is
in a state of endless oscillation. (When variables fall
on top of each other in a plot, the visible one is the
latest in the sequence PERIOD.)

Nature has a way of slapping your wrist when
you forget something important. Our wrist has just

been slapped. Naturally we do not get the same result
that algebra gives: the algebraic solution comes from
treating all of those relationships simultaneously. Our
computer program is treating them one	at	a	 time.
The algebra says that if one variable changes, they
all change. The computer, being a purely sequential
machine, thinks it can change one variable without
changing the others. If the physical system being
modeled is of that nature—if it, too, is a sequential
state machine—then the computer will produce a
correct picture of behavior. But, if the system being
modeled works in terms of continuous variables, even	
in	part,	the computer will turn it into a sequential-state
machine and analyze that	kind of system instead of the
one we actually have. That is what has happened here.
We forgot to tell the computer that these variables can’t
change as fast as the computer can compute.

a more accurate approach

In order to make this simulated system behave the
way the algebra says it should, we have to slow down
changes in one or more variables to take account of
the fact that we are dealing with real, physical variables
and not abstract numbers. The simulator does this
in the input and output functions, lines 37 thru 40
(input) and 41 thru 44 (output). We will be basically
dealing with a linear system in which both the input
and output functions are constants of proportionality.
As you can see from listing 2, however, there’s a little
more to it than that.

Consider line 42: O = O + S2* (K2*E – O). The
O on the left side is the new value of that quantity
after this program step has been executed. On the
right side, O indicates the last value of the output
quantity. We recognize K2*E as a calculation of the
output quantity as if it were simply proportional to
the error signal, E. The expression in parentheses,
therefore, is the difference	between this calculated
new value and the old value of O. This is how much
the output quantity would change if it could change
instantly.

This calculated amount of change is multiplied by
S2, a slowing	factor,	and the result is added to the old
value of O. We calculate the amount of change that
an instantly reacting system would produce, but allow
only a fraction S2 of it to occur on any one iteration.
S2 is a positive number between zero and one. We’ve
put a low-pass filter into the output function, without
affecting the steady	state	proportionality constant.

	 BYTE	�:		July	�979.		The	Nature	of	Robots;	Simulated	Control	System	 9

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

The same thing is done for the input function.
A slowing factor S1, between zero and one, acts to
slow P down. We need only one slowing factor to
make this simulator behave realistically, but there is
provision for two, so that you can explore the effect
of having two if you wish. In all the plots to follow,
we’ll use a modest slowing factor of S1=0.5 in the
input function, and essentially all of the required
slowing in the output function. Once you get the
hang of this you can put slowing factors into any of
the functions.

The simulator is initialized with S1 and S2 set to 1,
which reduces O + S2x (K2xE – O) to O + K2xE – O
or just K2xE (no slowing at all). The same is done for
the input function. Let’s set them to other values and
see what happens. The values of S1 and S2 can be set
by typing S1=n or S2=n and a carriage return:

	 :S1=0.5	
	 :S2=0.2
	 :	.	 		(run	with	initialization)

Suddenly we see nice, smooth relationships (figure 7).
If you measure, you’ll see that the input signal, I, ends
up just six units to the right; the same solution given
by the algebraic approach.

Does this mean we can just use algebra to analyze
a control system? Not at all. We won’t delve into this,
but the algebraic solutions are valid only if the differ-
ential equations which really describe the system have
steady state solutions. Then the algebraic solutions are
the steady state solutions. In our simulator, we see all
the time variations that lead toward the steady state,
and the algebra says nothing about these. By put-
ting the slowing factors into our calculations we have
caused this system to seek a steady state. Therefore,
it is the stability of the system that tells us we can use
algebra, not the other way around. Predicting stability
can become a messy process. We fiddle around with
slowing factors until we get stability, which is more
or less how Nature does it anyway.

Figure 7: The	slowing	factors	have	been	changed.		
S�	equals	0.�	and	S�	is	0.�.		We	now	have	a	much	
smoother	curve.

Figure 8: Adjustable	 parameters	 are	K�	 (input	
sensitivity),	S�	(input	slowing	factor),	K�	(output	
sensitivity),	and	S�	(output	slowing	factor).		P	and	
O	can	be	initialized	to	any	starting	value	(normally	
zero).		R	and	D	can	be	set,	and	remain	the	same	dur-
ing	a	run.		The	value	of	the	feedback	function	is	set	at	
0.�,	the	value	of	the	disturbance	function	at	0.�.

:S1=0.5
:S2=0.2
:.

�0	

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

We have now established the fact that using natu-
ral logic and following causes and effects around the
closed loop as a sequence of events will lead to a wrong
prediction of control system behavior. This imme-
diately eliminates three-quarters of what biologists,
psychologists, neurologists, and even cyberneticians
have published about control theory and behavior.
We are just beginning to see that one must view all the
variables in a control system as changing together, not
one at a time. This is what I mean by retraining the
intuition. Cartesian concepts of cause and effect, and
Newtonian physics, have trained us to think along
directed lines. What we need to do to understand
control systems is to learn how to think in circles.

Properties of a control System

Figure 8 shows the control system and its environ-
ment as we will be dealing with it from now on. Let’s
start with some definitions:

Loop	Gain	means the product of all the steady
state factors encountered in one trip around the
closed loop, counting the comparator as a factor
of –1. In the initial setup, K1 was 1, K2 was 2,
and the feedback function FNF was a multiplier
of + 0.5, so the loop gain was –1. The sign of the
loop gain is the sign of the feedback; we have (and
will continue to have) negative feedback.

Error	Sensitivity	is the factor K2, the steady state
proportionality factor in the output function FNO.
This number expresses how much output will be
generated by a given amount of error signal.

Input	Sensitivity	is the factor K1, the steady state
proportionality factor in the input function FNI.
This number expresses how much perceptual
signal will be generated by a given amount of
input quantity.

We are going to perform a series of experiments with
this control system in order to arrive at some use-
ful rules of thumb for thinking about how control
systems work. These rules are approximations, but
by doing the experiments and seeing how good the
approximations are, you will learn to think precisely
about control phenomena, even when using approxi-
mate language.

We will set the system parameters to give a loop
gain of –10. As a way of summarizing where we are
(refer to figure 8), the commands are given one at a
time with annotations:

:K1=1 Input sensitivity = 1.
:K2=20 Error sensitivity = 20.
:S1=0.5 Input slowing factor = 0.5.
:S2=0.07 Output slowing factor = 0.07.
:R=0 Reference signal = 0.
:O=0 Output initialization = 0.
:P=0 Perception initialization = 0.
:D=0 Disturbance = 0.

Type those commands, and the system is now set up
in a “home base” condition. Remembering that the
comparator is equivalent to the factor of –1 and the
feedback function is permanently set to be a factor
of + 0.5, this combination of parameters gives a loop
gain of 1 x (–1) x 20 x 0.5 = –10.

There are two fundamental rules of thumb: a
control system keeps its perceptual signal matching
its reference signal, and the output of a control sys-
tem cancels the effects of disturbances on the input
quantity. We will take these up in order.

 Rule 1: P = R
We’re looking at the system with no disturbance act-
ing (D=0). If you want to be sure that everything
stays at zero, type PLOT PERIOD . followed by a
carriage return. You will see a row of Ds, D being the
last symbol in the sequence PERIOD and hence the
only one visible when all variables are at zero.

Now we will plot just the reference signal and the
perceptual signal. The first two points will be done
with the initial conditions set up above. The reference
signal will then be set to + 25 units, and the plot will
be continued for 13 more points. Since this plot will
commence with	initialization (the dot command), an
extra line showing the initial conditions will be plotted
first. This makes a total of 16 lines, which will fit on
most video displays. Of course, if you’re doing this
on paper you don’t have to worry about the number
of points plotted. Here is the command string:

:PLOT PR,L=2,.,R=25,L=13,/
Before discussing this, let’s do another run of 13
points (figure 9), setting the reference signal to –25
units and continuing without initialization (the slash
command,/):

:R= –25,/
It is clear that the perceptual signal comes to a steady
state quite close to the magnitude of the reference sig-
nal, whatever the reference signal may be. The ques-
tion is, how critically does this tracking effect depend
on the input sensitivity and error sensitivity?

	 BYTE	�:		July	�979.		The	Nature	of	Robots;	Simulated	Control	System	 ��

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

Let’s leave the reference signal at –25 and do
a run in which the error sensitivity is doubled
at the start, and the input sensitivity is doubled
halfway through the run. We will start from the
previous conditions. The loop gain will now be
–40 instead of –10.

:K2=40,L=8,/,K1=2,/
To insure that everything is working cor-
rectly, let’s flip the reference signal to + 25 units
(figure 10):

: L=16, R=25,/
While there is an effect on the way	the tracking
takes place, the only effect of these rather drastic
changes in input and error sensitivity is to make
the tracking a little better. What about a decrease	
in these parameters?

:L=16,K1=0.5,K2=10,/, R=25,/
(Loop gain now 2.5)

Figure 11 shows that the approximation P=R
isn’t very accurate any more. For loop gains
smaller in magnitude than about 10 (negative),
the approximation begins to lose accuracy.

You will notice that doubling the error sen-
sitivity, which doubles the amount of output
generated by a given error, does not	double the
amount of output that actually occurs. Far from
it. When, for any reason, the loop gain goes
up, the steady state error simply gets smaller,
assuming that the system remains stable. This
fact does violence to the popular idea that the
brain commands muscles to produce behavior.
If that were the case, doubling the sensitivity of
a muscle to the nerve signals reaching it ought to
produce twice as much muscle tension. Noth-
ing of the sort happens, unless you’ve lopped off
the rest of the nervous system, particularly the
feedback paths.

As long as the loop gain is sufficiently large
and negative (–10 or more negative will do for
a number), a stable control system will match
its perceptual signal nearly to its reference signal,
regardless of the reference setting. We are ignor-
ing, of course, transient effects.

Figure 9: The	values	of	variables	are	listed	in	this	plot.		
The	disturbance	value	is	changed	from	+��	to	–��.

Figure 10: Change	of	gain	during	plot.		After	�th	
line,	gain	goes	from	�0	to	�0.		Reference	signal	is	
changed	to	check	operation.

��	

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

All of this was done with the disturbance set
to zero. Now let us set the reference signal to
zero, and check the second fundamental rule of
thumb.

 Rule 2: (delta O) = –(delta D)
This rule requires some interpretation. It says, for
the sake of brevity, that (with the reference signal
constant) a change in the output quantity is equal
and opposite to (the minus sign) a change in the
disturbing quantity. Generally, the input and
disturbing quantities will affect the input quantity
through different physical paths. In our model, the
output quantity acts through a multiplier of 0.5,
and the disturbance through a multiplier of 0.8.
The rule has to be interpreted to mean that the ef-
fects	of the changes on	the	input	quantity	are equal
and opposite. We will see this demonstrated.

We will now plot the output quantity, O, the
disturbing quantity, D, and the input quantity, I
(to make the above clear). The reference signal
could be left where it is, but to avoid confusion
let’s set it to zero for this set of plots. The loop
gain is set to –10.

:PLOT OID, R=0,K1=1,K2=20,L=1,D=0,
.,L=15, D=15,/

Let this plot run out, then:
:D= –15,/

There is some lurching back and forth in fig-
ure 12, but in the steady state the behavior of
the input quantity shows that the effect of the
disturbance is essentially cancelled by the final
effect of the output quantity.

If you did some measuring on the plot, you
would find that the final value of the output
quantity is very close to 8/5 of the value of the
disturbing quantity. This follows from three facts:
the input quantity ends up nearly at zero; one
unit of output has 0.5 unit of effect on the input
quantity; one unit of disturbance has 0.8 unit
of effect on the input quantity. This is the kind
of reasoning that helps in understanding how a
control system works.

The primary observation about a control sys-
tem is always the existence of an input quantity
which is stabilized against disturbances by varia-
tions in the output quantity. If the input quantity
is held essentially constant (in the steady state),
then one can	deduce	the	relationship between	dis-
turbances and the system’s output quantity simply

Figure 11: The	simulation	parameters	have	been	
changed	to	produce	a	gain	of	�.�.		Notice	that	the	
approximation	P=R	is	now	inaccurate.

Figure 12: The	reference	signal	has	been	set	to	zero.		
This	plot	shows	us	the	input	quantity,	the	output	
quantity	and	 the	disturbance	 signal	 for	D=	+��	
and	then	D=	–��.

	 BYTE	�:		July	�979.		The	Nature	of	Robots;	Simulated	Control	System	 ��

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

from observing the properties of the system’s environ-
ment. On inspection, an external observer can see
both the feedback function and the disturbance func-
tion, here multipliers of 0.5 and 0.8 respectively. For
any given disturbance, the effect on the input quantity
for a constant output quantity can be calculated on
purely physical grounds. Since the input quantity
remains undisturbed in the steady state, one can then
look at the connection between the output quantity
and the input quantity, and deduce how the output
quantity must change to account for the fact that the
input quantity doesn’t	change.

Thus, in order to predict how this system will react
to any external disturbance, it is necessary only to
know that the system is a control system and to look
closely at its environment. The kind and amount of
reaction follow from the nature of the feedback and
disturbance functions which are properties of the
visible environment.

Most important, as far as the life sciences are
concerned, the form and amount of reaction	do not	
depend on	any	property of	the control system; not
enough to make any difference. Therefore, when

you apply a stimulus and see a response, you are
using the organism as a complicated analogue
computer in order to study the physics of the local
environment. This is not what the life sciences
have thought they were doing.

All that remains to wrap up this section is to
see the effects of disturbances when the reference
signal is set to different values. This will lead to
the definition of a useful technical term: the refer-
ence	/eve/	of	the	input	quantity	(see figure 13):

:PLOT RIOD,D=0,R=0,L=1,.,R=12,
L=15,/,D=15,/

If you have a 16 line video display this will scroll
past you, losing the early parts, but no matter.
The first event is that the reference signal is set
to 12, and the input quantity moves essentially
to + 12. The output quantity goes to + 24 in
order to accomplish this. Then the disturbing
quantity goes to + 15, which has the exact effect
on the input quantity that + 24 units of output
have. As a result, the output quantity drops to

zero—exactly	zero, if you look at the numbers.
In effect, the disturbance, by itself, has enough

effect to make the perceptual signal match the refer-
ence signal. Looking at figure 8, you can see that this
would mean a zero error signal and no drive to the
output function. So, whenever the output drops to
zero, we know that the perceptual signal is matching
the reference signal, even if we can’t see it.

In our model right now, the input sensitivity is
1, so the perceptual signal is numerically equal to
the input quantity. That’s a coincidence, since the
units are different: physical units outside, impulses
per second inside. Even if K1 wasn’t 1, the output
would still drop to zero when P = R. Thus, we can
give a special name to the particular value of input
quantity (however created) that brings the error signal,
and hence the output quantity, to zero: the	reference	
level	of the input quantity. The reference signal clearly
determines what this reference level will be, but so
does the form of the input function.

main Points reviewed

All of this is supposed to have established two principal
ideas. The first is that control systems control what
they sense, not what they do. The second is that con-
trol systems act on the outside world only in order to
protect a controlled perception against disturbance.

Figure 13: A	 look	 at	 different	 reference	 signal	
effects.	 	As	explained	in	the	text,	the	disturbance	
signal	has	made	 the	 perceptual	 signal	match	 the	
reference	signal.

��	

© 1979 William T. Powers – File byte_july_1979.pdf from www.livingcontrolsystems.com.

As we have demonstrated these principles, we have
established some other odd facts. We have found that
the main effect of negative feedback in a control loop
is to diminish the effects which disturbances would
otherwise have on the system’s input quantity. While
we have had only one disturbance at our disposal,
it should be clear that the number or the causes of
disturbances make no difference. If ten different
disturbances were acting at once, they could only end
up increasing or decreasing the value of the controlled
input quantity. Since the system maintains control
by acting directly on the input quantity, and not by
acting to oppose the cause of the disturbance, the
system does not have to take account of the number
of causes acting, or the phenomena that are involved.
It acts to oppose the net	effect	of any disturbances on
the input quantity.

From the point of view of the behaving sys-
tem itself, reality consists of the magnitude of one
perceptual signal, because that is the only internal
representation of the outside world. If the system
can be said to have a purpose or intention, it must
be to maintain the perceptual signal matching the
reference signal. The reference signal specifies to the
system what it is to sense, but not what it is to do.
The output that matches perceptual and reference
signals is determined by the nature of the feedback
function and by the strength and direction of any
disturbances that may be acting. Whatever sets
the reference signal, thus effectively controlling the
perceptions of this system, does not have to know
anything about how	 the control system comes up
with a matching perception.

What is perhaps most amazing to a person who
has not previously worked with negative feedback
systems is the capability that this system has to
maintain quite precise control over its own percep-
tual signal, even if its own properties change. If its
output apparatus becomes stronger or weaker, or its
perceptual apparatus becomes more or less sensitive,
there is scarcely any effect on the perceptual signal.
As long as some minimum	loop gain is maintained
and the system does not become unstable and begin
oscillating, it does not really matter how much loop
gain there is, or whether most of it is in the output
or the input function.

A servomechanism engineer might find this ap-
proach somewhat odd. Why all this fuss about the
system’s internal perceptual signal? When you build
a control system for a practical use, you worry more

about the external variables than internal variables,
because the customer is interested in the external
variables.

This is exactly the point. Living control systems
are not interested in the external variables. They can’t
be. They don’t know about them, except indirectly.
All they know is what happens to themselves. The
point of behavior is not to accomplish something for
a user in the external world, but to affect the system
itself. Everything that a living system knows about the
outside world has to first exist in the form of percep-
tual signals, or some other internal effect of external
events (not all organisms have nervous systems).

In part 3 we will start looking at living systems
more directly, and this will become much clearer.
We now know that control systems control, above
all, their own internal perceptual signals. Next time
we will see why	they do that.

In the meantime you might enjoy using this
simulator to do further explorations. We have looked
into only a few of the questions that might be raised
about control systems. The simulator can reveal far
more than we have seen. For example, it is instruc-
tive to look at the effects of the disturbance strictly
from the external point of view (plotting I, O, and
D), and then to look at exactly the same effects from
inside (plotting P, E, and R). We haven’t even raised
the question of what a control system looks like when
it becomes unstable, how the slowing factors interact
with loop gain to determine stability, or what hap-
pens when the input function, the output function,
or both are nonlinear. Speaking of nonlinearity, you
might try rewriting the definition of the feedback
function as follows:

45 DEF FNF(X)=X*X*X/2048 + X/2
and then performing some of the experiments again.
Try to make the input function logarithmic	(adding a
constant to make sure you don’t make the perceptual
signal negatively infinite), and see how the input
quantity and perceptual signal behave as the reference
signal or disturbance is changed.

The main objective before the next article in this
series appears is to understand how a control system
controls its perceptual signal, and why an external
observer, who doesn’t know about the controlled
input quantity, might think the disturbance acts on
the system to make it respond, like a doorbell. The
simulator is there to help you grasp this closed loop
phenomenon. I hope it does help.

